数字孪生在航空发动机领域的应用分析

随着大数据、物联网、智能发动机等概念的提出和兴起,一种能够实现物理世界与虚拟信息世界交互与融合的技术手段——数字孪生(Digital Twin)应运而生,为解决航空发动机研制中日益突出的多系统、多维度协调任务与不断提高的设计效率、验证准确性、辅助决策的高效性之间的矛盾提供了新的思路。
数字孪生技术是充分利用物理模型、传感器更新、运行历史等数据,集成多学科、多物理量、多尺度、多概率的仿真过程,在虚拟空间中完成映射,从而反映相对应的实体装备的全生命周期过程。数字孪生不是简单的仿真模拟、不是单纯的数据存储平台、不是一成不变的系统,而是面向包括产品设计、试验、加工制造、运行维护的全生命周期,可以根据产品的行为和变化而不断演化的数字映射系统(如图1所示)。2013年,美国空军发布《全球地平线》顶层科技规划,将数字孪生称为“改变游戏规则”的颠覆性机遇;2016年和2017年,信息技术研究与顾问咨询公司高德纳(Gartner)将数字孪生列为当年十大战略科技发展趋势之一;2017年11月,美国武器生产商公司将数字孪生列为未来航空航天与国防的6大顶尖技术之首。近年来,基于数字孪生技术的创造性和颠覆性,数字孪生技术已经逐渐从理论研究快速向工程应用转变,该项技术在航空发动机全生命周期的各个阶段也有所应用。
图1  数字孪生在产品全生命周期内的应用示意
数字孪生技术用于设计
基于数字孪生的航空发动机设计的意义
基于数字孪生的产品设计是指在产品数字孪生数据的驱动下,利用已有物理产品与虚拟产品在设计中的协同作用,不断挖掘产生新颖、独特、具有价值的产品概念,将其转化为详细的产品设计方案,以降低产品实际行为与设计期望行为间的不一致性。在航空发动机设计阶段,
数字孪生的主要作用在于:根据用户要求,构建发动机仿真模型,形成发动机数字孪生体,并对其性能和功能进行多系统联合仿真,快速验证产品的设计功能。
数字孪生技术在航空发动机设计领域的典型应用案例
2018年2月,罗罗公司提出了“智能发动机”(Intelligence Engine)愿景,希望借助数字孪生等数字化技术,建立航空动力的互联性,使发动机具有情境感知和理解能力。此后,在“智能发动机”愿景的推动下,罗罗公司为发动机的每个叶片都创建了数字孪生体,并于2019年成功测试了“超扇”(UltraFan)发动机设计方案。
GE航空集团将数字孪生技术视为加速未来先进技术发展的一个重要推动力,并专门开发了数字孪生工业云平台Predix,目前正在该平台上开展先进涡桨发动机(Advanced Turboprop,ATP)的研制工作,用作公务机和通用飞机的动力。
俄罗斯联合航空制造集团公司(UEC)下属的礼炮制造中心从2019年年底开始将数字孪生技术应用于产品设计,其目的在于打造统一的数字平台(如图2所示),整合所有产品和数学模拟过程中产生的数据、文件和专业化软件程序,该中心使用了多种数值模拟方法,每种方
法都对应特定的发动机设计阶段,目前技术人员正准备将该数字平台集成至数值模拟方法中,后续该技术将运用到雅克-130飞机改进设计以及发动机的部件调试和验证试验中。
图2  礼炮制造中心开发的数字孪生工作平台
数字孪生技术用于试验
基于数字孪生的航空发动机试验的意义
数字孪生驱动的测试/检测模式是指在虚拟空间中构建高保真的测试系统及被测对象虚拟模型,借助测试数据实时传输、测试指令传输执行技术,在历史数据和实时数据的驱动下,实
现物理被测对象和虚拟被测对象的多学科、多尺度、多物理属性的高逼真度仿真与交互,从而直观、全面地反映出产品全生命周期的状态,有效支撑基于数据和知识的科学决策。数字孪生技术不仅可以用于建立精确的航空发动机数学模型,还可以用于开展大量的虚拟试验和适航性验证试验,包括开展加温、冷却及气动载荷作用下的模拟试验、模拟叶片断裂的特种试验、吞鸟试验、结构可靠性和耐久性试验等。在航空发动机试验中,数字孪生的主要作用在于:设计阶段通过一系列可重复、可变参数、可加速的虚拟试验,提前验证航空发动机不同工况和外部条件下的性能情况。在发动机试验过程中,通过从传感器上传输的数据实时反映发动机实体的整个行为过程,通过试验过程中获取的数据查故障原因,预测可能发生的故障及模型优化和修正。
数字孪生技术在发动机试验领域的典型应用案例
俄罗斯航空发动机行业计划在2024年完成数字孪生技术引入工作,计划通过开展模拟真实条件下虚拟试验、开发高保真验证模型、采用专门的计算结果分析方法来提高测试质量,减少试验项目。预计该项技术将用于TV7-117ST、AI-222-25涡扇发动机和其他民用航空发动机中。目前,数字孪生技术在俄罗斯航空发动机领域已得到了实际应用。联合发动机公司(UE
C)下属土星科研生产联合体在进行发动机台架试验时,会同时建立其数字孪生体。通过该数字孪生体,工程人员可以实时了解到发动机的整个工作过程,有效查和排除台架试验阶段发现的问题,建立起实物与数字孪生体的互联互通。
数字孪生技术用于制造加工
基于数字孪生的航空发动机制造加工的意义
数字孪生起源于工业制造,主要的应用对象也是工业制造。在航空发动机制造加工中,数字孪生的主要作用体现在设备层、产线层和工厂层的数字虚拟化。在设备层,通过在研制初期建立的数字孪生体,进行航空发动机制造设备、制造流程、电气设备、软件同步设计,通过数字孪生体验证制造过程,在验证过程中出现问题时,只需修正模型,修正完成后再次执行仿真,直至正确完成整个加工过程。在产线层,通过建立物理生产线的数字孪生体,提前进行安装、测试工艺仿真,模拟航空发动机制造的整个工艺流程。在工厂层,借助数字孪生体,建立数字化生产链和生产车间,实现计划、质量、物料、人员和设备的数字化管理。
数字孪生技术在航空发动机加工制造领域的典型应用案例
洛克希德-马丁公司利用数字孪生技术创建“数字主线”(Digital Thread)的工作模式,改进了多个工作流程。通过流程改进,公司处理F-35进气道加工缺陷的决策时间缩短了33%,此项创举获得了2016年美国国防技术制造金奖。
2018年7月,土星科研生产联合体建立了采用数字孪生技术的生产车间,来开展燃气涡轮发动机及其组件制造生产链的数字化工作,并应用物联网技术,将数据感应、采集与生产控制系统及车间数字孪生关联在一起,以实现实物和孪生体的互联共生。

本文发布于:2024-09-20 10:49:00,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/821463.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:数字   发动机   技术   试验   航空
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议