国内光催化实验组

福大光催化研究所付贤智院士课题组(重点实验室)
付贤智
中国工程院院士,现任福州大学校长,教授,博士生导师。
付贤智院士是我国光催化领域的知名学者,他针对光催化领域的重大科学与技术问题,在光催化剂的设计与制备、光催化反应机理、光催化反应动力学和光催化反应器设计等方面开展了系统深入的研究,研制出一系列新型、高效、可见光诱导的光催化剂,开发出提高光催化过程效率的多种新技术、新方法和新装置,承担并完成了国家高技术产业化示范工程项目,解决了光催化技术产业化实施的一系列关键技术问题,并将光催化技术应用成功地拓展到环保、建材、军工、电力等领域,研制开发了多项光催化产品及其工业生产技术并实现了产业化,取得了显著的社会经济效益,为我国光催化技术进步和产业发展做出了贡献。
大连化物所 李灿(院士)
现任中国科学院大连化学物理研究所研究员、催化基础国家重点实验室主任。
 主要从事催化材料、催化反应和催化光谱表征方面的研究。研制了具有自主知识产权的国内第一台用于催化材料研究的紫外共振拉曼光谱仪并开始商品化生产;在国际上最早利用紫外拉曼光谱解决分子筛骨架杂原子配位结构等催化领域的重大问题;发展了纳米孔中的手性催化合成和乳液催化清洁燃料油超深度脱硫技术等。近年来,主要致力于太阳能光催化制氢以及太阳能光伏电池材料研究。
京大学邹志刚
现为南京大学长江特聘教授,新型生态能源环境材料研究中心主任,博士生导师
主要研究成果如下: (1)可见光光催化材料的开发及在光解水制氢和环境净化方面应用的研究 开发高效太阳能转换光催化材料体系已成为当前国际材料领域为从根本上解决能源和环境污染问题所进行的重大前沿科学探索之一。光催化材料可以分成第一代和第二代,第一代光催化材料主要是紫外光响应型,其典型的代表材料是TiO2。第一代光催化材料(TiO2)只能利用太阳光中的紫外光,而紫外光只占太阳光能量的4%左右,可见光(400~750nm)却占太阳光能量的43%。2001年,邹志刚等人发现了In0.9Ni0.1TaO4光催化材料并应用于光解水制氢,实现了将太阳能转化为化学能(Nature 414,625,2001)。该工作突破了传统的只
能在紫外光下具有活性的第一代光催化材料体系,发展了一种全新的具有可见光活性的新型复杂氧化物催化体系(In1-xNixTaO4)。该项成果在国际上引起广泛关注。这种新型复杂氧化物光催化材料的提出,代表了第二代可见光响应型光催化材料体系研究的开始。 此后,又成功地开发了一系列新的材料体系,如BaM1/3N2/3O3(M =Ni, Zn; N=Nb, Ta) 、MCo1/3Nb2/3O3 (M=Ca, Sr, Ba) 等。并将p-n结及双光子异质结的概念引入光催化材料体系,通过两种光催化材料的能带结构的合理匹配,促进电子和空穴的快速分离,开发了Cr掺杂的Ba2In2O5/In2O3异质结光催化材料体系,初步完成了室外实际太阳光下光催化分解水产生氢气的实验(J. Chem. Phys. 117, 7313, 2002; J. Phys. Chem. B. 108, 811, 2003; Appl. Phys. Lett. 85, 689, 2004; Chem. Mater. 16, 1644, 2004; Chem. Mater. 17, 3255, 2005; Appl. Phys. Lett. 88, 071917, 2006)。 在光催化环境净化材料的研究方面, 邹志刚等人成功地合成了能利用可见光有效地降解水和空气中的甲醛、乙醛、亚甲基蓝和H2S等有害物的新型光催化材料,在J. Phys. Chem. B(106, 13098, 2002; 106, 517, 2002; 107, 61, 2003; 107, 4936, 2003; 107, 14265, 2003; 108,12790,2004)等杂志上发表一系列文章,也实现了利用可见光矿化环境污染物(Angew. Chem. Int. Ed. 43, 4463, 2004; Res. Chem. Intermed. 31, 493, 2005)。 本研究成果在该领域最具权威的Nature、 Angew. Chem. Int. Ed. 及J. Phy
s. Chem. B等国际刊物上发表相关论文90余篇,并已申请10余项中国发明专利和6项日本专利。 (2)新超导材料PrBa2Cu3Ox的发现及超导机制的研究 以YBa2Cu3Ox为代表的金属氧化物高温超导材料RBa2Cu3Ox(R为稀土元素)被发现以来10年间,人们一直认为用Pr置换Y所得到的RBa2Cu3Ox不显示超导性能的现象是众所周知的,也有不少研究者提出了试图解释此现象的理论假设。邹志刚等人采用改进的TSFZ方法,在世界上首次合成了RBa2Cu3Ox超导体单晶,并在极限状态(高压、低温)下测定物性,从不同角度探究该物质的超导现象并研究其超导机制。发现了加压下有很大的压力效应。此外,通过单晶结构解析,判定了有超导特性的样品具有完整的结晶结构,这与传统的、用Flux方法制备的无超导特性样品(Pr-Ba-Cu-O)Cu(I)位置有明显的缺陷的情况有显著的不同。申请者的研究成果结束了多年来关于RBa2Cu3Ox是否有超导特性的争论,为新探索超导材料及超导机制提供了有益的信息。本研究成果在该领域最具权威的Phys. Rev. Lett.及Phys. Rev. B等国际刊物上发表相关论文20多篇,申请和获得专利多项,在国际上有很大的反响。
北京化学所赵进才(院士)
中国科学院化学研究所研究员,为中国科学院院士
主要从事低浓度、高毒性、难降解有机污染物光催化降解及机理方面的研究。提出并确立了不同于传统紫外光光催化的染料污染物可见光光催化降解机理,将TiO2光催化从紫外光区拓展到可见光区域。发现了光催化反应过程中氧原子转移的新途径,揭示了分子氧在光催化反应中的新作用。将光催化原理用于环境中的重要光化学过程研究,阐明了环境中铁物种的光化学循环规律及其环境效应。
大连理工 全燮(xie)
大连理工大学环境与生命学院院长
持久性有机污染物在环境系统中的迁移转化及生态风险性研究;现代技术(如电磁波技术、高级氧化还原技术等)在环境治理与修复中的应用原理和方法;环境应用材料(如高效水处理剂、新型纳米催化剂、新型生物载体等)的研制与产业化应用。 
研究方向:
(1)环境污染化学
(2)污染控制化学与技术
(3)现代技术在环境治理和修复中的应用
(4)新型环境应用纳米与功能材料
武汉理工余家国
武汉理工大学材料复合新技术国家重点实验室 
博士、教授、博士生导师、国家杰出青年基金获得者、新世纪百千万人才工程国家级人选,湖北省楚天学者计划特聘教授,武汉理工大学首席教授。
主要研究方向
半导体光催化材料、光催化分解水制备氢气、染料敏化太阳能电池、室内空气净化技术与产品、CO2捕获、吸附材料、材料的仿生合成与形貌控制, 纳米结构材料, 多孔材料,半导体材料的光电化学等
香港中文大学 余济美
研究范围包括环境化学,光催化,纳米材料和痕量分析等多方面。八十年代初攻读博士学位时,发展出一套实用的痕量金属萃取方法,得到环境分析化学界广泛使用。自八十年代中起开始参予半导体光化学的研究。
清华大学   朱永法
研究重点主要在于 
(1)软化学法制备纳米复合氧化物功能粉体和薄膜材料; (2)金刚石表面金属化的研究; (3)光催化在环境净化上的应用研究; (4)新型汽车尾气净化催化剂的模型化研究; (5)化学与环境传感器的研究; (6)纳米结构材料的合成及其应用研究; (7)催化燃烧和氧化在工业废气和废水净化上的应用。 
目前的研究方向: 
(1)表面与界面化学研究:XPS和AES的指纹信息研究;薄膜材料的表面与界面化学结构研究; (2)环境催化净化研究:纳米薄膜光催化研究以及催化氧化研究及其在室内空气净化和工业废气净化上的应用; (3)纳米结构控制合成及功能薄膜; (4)纳米材料的应用
研究。
兰州化物所  吕功煊
中科院兰州化物所研究员,博士,博导。
主要研究方向: 
环境催化新材料、新反应
光电催化、太阳能光化学转换与存储
西安交大 郭烈井
国家杰出青年科学基金获得者,教育部首批“长江学者”特聘教授,中组部、国家人事部“百万人才工程”第一层次专家,教育部首批“长江学者和创新团队发展计划”创新团队带头人,科技部“973首席科学家”(连续两届资助),国家自然科学基金创新体学术带头人,科技部首批“科技创新团队”负责人,首批中组部“国家万人计划”第一批科技创新领军人才,科技部十一五“863”高技术能源领域专家组成员。
带领实验室在原有优势学科方向即能源转化与能源动力系统中的多相流热物理理论与技术研究方面取得了重大成果,同时开拓发展了“氢能规模制备与氢能源动力系统的理论与技术” 的新研究方向,组建了一支朝气蓬勃、积极上进的学术研究队伍,并建立了与之适应的实验基地。在太阳能光催化分解水制氢、湿生物质超临界水催化气化制氢、多相流相界面交换动力学研究等方面取得相当可喜的成绩,主持争取承担了有关氢能制备与利用方面的国家“973”、国家自然科学基金面上、重点、海外杰出青年科学基金等项目6项,使实验室科研工作有了迅速的发展,既保持了传统领域内的优势,又在新能源转化与高新技术及其多相流研究领域等方面走上国际舞台。在2003年全国重点实验室评估中,动力工程多相流国家重点实验室被评为优秀,并在工程组排名第一。
太原理工 李瑞丰
太原理工大学教授、博士生导师、工业催化学科带头人。现任太原理工大学化学与化工学院院长、教育部煤科学与技术重点实验室副主任。

本文发布于:2024-09-20 13:41:58,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/812443.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:材料   研究   环境   技术   催化   超导   方面   化学
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议