淀粉1

一、前言
近年来,不论是在我国还是世界范围内,油污染愈发引起人们的重视,其中45%来自海洋轮船油泄露,36%来自城市废水排放,所以怎样处理则成为了近期热门的话题,高吸油树脂则自然而然成为了备受关注的研究课题。高吸油树脂比起传统的吸油材料具有强力的优势,传统吸油材料在吸油的同时也会吸收水分,并且保油效果较差。这些问题高吸油树脂均可有效解决。我们这次探讨的课题即是改性淀粉在高吸油方面的应用。
2、淀粉概述
淀粉是一种多糖,是植物储存能量的一种产物,以颗粒的形式贮存在植物的根茎之中,在生活中十分常见,同时也是重要的化工原料。
性质
绿豆淀粉
玉米淀粉
马铃薯淀粉
木薯淀粉
淀粉种类
种子
种子
块茎
块根
颗粒形状
圆形或椭圆形
圆形或多边形
蛋形或椭圆形
圆形或截头圆形
颗粒直径
10-28
2-30
5-100
4-35
主要特点
粘性足,吸水性小
粘性稍差,供应量大
粘性好,吸水性差
解冻稳定性高
淀粉常见几大种类,具体内容见下表
根据以上特征表述,在性能差不多的情况下,玉米淀粉供应量最大,可优先考虑玉米淀粉作为基质。淀粉颗粒具有渗透性,水和水溶液能自由渗入颗粒内部,在淀粉分子中,含有直链淀粉和支链淀粉两种,直链淀粉在内层,聚合度一般为几百,含量在20%-26%;而支链淀粉在外层,聚合度能达到几千甚至更高,含量在74%-80%
淀粉的化学式为(C6H10O5)n,其中n为聚合度,从几百到几千不等,有个别的支链淀粉甚至可以达到几百万。淀粉的化学结构见下图
              直链淀粉结构                                支链淀粉结构
根据淀粉的结构式即可看出淀粉具有众多羟基,羟基是亲水基,但是其间由氢键键合,淀粉并不溶于水,但在遇到热水的情况下,直链淀粉可溶,支链淀粉膨胀,最终淀粉成浆糊状,这种现象我们称之为淀粉的糊化,这种现象的主要原因是由于淀粉中的结晶部分被破坏,这也正是我们使淀粉糊化的目的所在。淀粉中同时含有结晶部分和非结晶部分,非结晶部分具有良好的渗透性,是化学反应发生的主要位置,为了使淀粉更好的改性,与其他成分反应, 糊化则是必不可少的。
淀粉分子上2,3,6位上的活性羟基均可发生化学反应,其中6位上的羟基优先反应。利用这些羟基,可以对淀粉进行改性,改性后的淀粉可分为氧化淀粉,醚化淀粉,接枝淀粉,交联淀粉,多元改性淀粉等。这些淀粉的用途以及性质略有不同,在多个方面应用广泛,并且优势明显。淀粉来源广泛,价格低廉,供应量大,可再生性强,并且属于现在提倡的环境友好型
材料。尤其在改性之后改善了其较差的力学性能,分散性,渗透性,使得淀粉在油田,海洋,化妆品,生活用品等方面都有了广阔的前景。
三、高吸油树脂简介
  传统吸油材料分类简介
分类
种类
应用领域
特长
缺陷
无机类包藏性
黏土
二氧化硅
珠层铁
石灰
工厂废油处理
漏油处理
价格低
安全
吸油量小
运输成本高
体积大,也吸水
不能燃烧废弃
有机类
天然系-包藏型
泥炭沼
木棉
纸浆
油炸食品的废油处理
工厂废油处理
漏油处理
价格低
安全
可燃烧废弃
受压会再漏油
体积大,也吸水
合成系-包藏型
PP织物
聚苯乙烯织物
聚氨酯泡沫
工厂废油处理
漏油处理
工厂排水混入油处理
流出油处理
吸油速度快
可燃烧废弃
受压会再漏油
体积大,也吸水
合成系-凝胶型
金属皂类
12-羟基硬脂酸
苄叉山梨糖醇
油炸食品的废油处理
油粘度调整剂
安全
可燃烧废弃
小型紧凑
必须加热溶解
合成系-复合型
氨基酸类
漏油处理
流出油处理
安全
可燃烧废弃
体积小
价格高
必须加热溶解
聚降冰片烯树脂
废油处理
漏油处理
可燃烧废弃
体积小
价格高,吸油量小
吸油速度慢
不吸收油脂类
正是由于传统吸油材料有以上众多缺点,高吸油树脂作为一种新型的功能高分子材料在近年来成为热门话题。高吸油树脂是将亲油单体聚合形成低交联度的聚合物,这种聚合物呈三维网状结构,吸油聚合物溶胀。它具有优秀的耐高低温性能,同时吸油速度快,吸油率高,保油性好,容易储存,并且可以吸收多种类型的油脂,从而可以替代传统吸油材料。
高吸油树脂的吸油机理则是,分子交联形成三维网状结构,形成许多微孔, 吸油过程中,油分子与树脂的亲油基链段进行溶剂化反应,当油分子进入网状结构足够多时,链段开始舒展,树脂发生溶胀,但是由于交联点的存在,在高分子链段伸展到一定程度后会发生回缩,知道树脂吸油平衡。交联度过高,吸油量少,保油性好,但是对油二次处理便变得困难许多,交联度过低,吸油量大,但是保油性会过差,所以应当选择较低的交联度,但同时不可过低。
高吸油树脂的交联常见三种方式:化学交联,物理交联,离子交联
化学交联:通常将含有 2 个或 2 个以上不饱和键的双烯单体和亲油性单体共聚,通过共价键将分子链连接在一起,形成三维网状结构,目前化学交联所形成的网状结构最为稳定,所以在高吸油树脂方面应用最多。
物理交联:物理交联作用是靠大分子链的缠结或相互作用,作用力分为两种,其一为范德华力,链段间相互吸引进行缠结;另一种是氢键作用,链段上的羟基或其他极性基团相互吸引造成链段缠结。由于比共价键的作用力弱很多,所形成的网状结构并没有化学交联的稳定。
离子交联:长链之间通过金属离子间的作用力,使得长链大分子缠结,相互连结在一起。
现阶段,高吸油树脂主要分为两类。
纯单体合成高吸油树脂:主要有烯烃类和丙烯酸酯类,合成丙烯酸酯类的主要方法有悬浮聚合,乳液聚合和分散聚合,其中最常用的是悬浮聚合法,如单体用丙烯酸长链烷烃或者甲基丙烯酸甲酯,交联剂用乙二醇二丙烯甲酯等双烯单体。烯烃类由于不含极性基团,所以对油的亲和力更好,吸油能力更加,但是由于高碳烯烃来源较少,导致研究进展较慢,困难较大,所以现阶段应用不如丙烯酸酯类广泛,是以后开发的前景所在。
改性天然高分子吸油树脂:天然高分子,例如木棉纤维,玉米秸秆等均可作为吸油材料,不过其仍有吸油量小,保油性差等缺陷,所以可以对类似天然高分子进行改性处理,使得改善其吸油所存在的缺陷。天然高分子具有来源广泛,价格低廉,易降解,环境友好等优势,利
用这些优势发展高吸油材料成为理想的前景。对其改性可以运用接枝,醚化等方法,如我们这次所讨论的对淀粉进行改性,在其羟基上接枝丙烯酸酯类,或者醚化接十六烷基均可达到高吸油,同时保油性良好的目的。
下面介绍一下高吸油树脂现阶段在国内外的研究情况。
4、国内外研究状况
正如上文所述,吸油材料的发展正在经历一个由传统向高性能型演化的过程。从最初的棉花,海绵等多孔性物质吸油,到现在的改性天然高分子或亲油性单体合成的高吸油树脂。
国外在这方面进展的要比国内早许多,技术方面也要成熟。最早于1966年美国的Dow
化学工业公司用烷基苯乙烯和二乙烯基苯聚合得到了一种非极性的高吸油性交联聚合物,该烯烃分子内不含极性基团,对各种油品的吸附性能较好。1971年,Bommer等在聚氨酯泡沫塑料中加入胶黏剂,稳定剂和其他添加剂,以增加吸油能力,改进机械性能。1973 年,日本 Mitsui 化学公司采用甲基丙烯酸烷基酯与二乙烯基苯交联制得高吸油性树脂。1989 年日本东京大学的村上谦吉在处理含有全氯乙烯、三氯乙烷等氯代烃的废水时,用电子束或放射
线照射含有交联剂的高分子溶液,在过氧化物的引发作用下,制得高吸油性树脂。90 年代,日本触媒、东京计画等公司开发了丙烯酸酯类吸油性树脂,此类型树脂吸油倍率较高,但是吸收速度较慢,达到饱和吸油需要6小时或以上,油品的粘度越大,吸油速度越慢。1990年,Sugerman发现经少量有机磷酸肽修饰的聚降冰片烯贮存期长,使用方便、高效,保有率高。1991 1992 年,日本的三菱油化、三洋化成相继申请了有关高吸油性树脂的专利,同时 Nippon Shokubai 公司经悬浮聚合制得的高吸油树脂开始了商品化生产,达到100t/a 的规模。90年代,日本触媒、东京计画等公司开发了丙烯酸酯类吸油性树脂,此类型树脂吸油倍率较高,但是吸收速度较慢,达到饱和吸油需要6小时或以上,油品的粘度越大,吸油速度越慢。1999Tanaka等采用涂层的方法制备了具有良好吸油性和保油性的复合材料,并已用于含油废水的处理和油品回收2000kim等在吸油聚合物中加人特定的无机盐粒子,用以吸附和处理无机和有机酸取得了良好效果。在美国1997,adam等开发了具有良好耐磨性能的高吸油树脂粒子,并申请了专利年,1998berrigan等制备了以纤维素纤维和吸油粒子复合而成的吸油材料,可用于吸收各种油品Hozumi.Blaney等制备了以一个碳原子的甲基丙烯酸酷为单体的高吸油树脂粒子,用于废水中油品的回收功;Inaoka等合成了含不溶于水的无机粒子的粒状吸油剂并申请了专利。此外,2000,韩国Kim S H等研制出用UV交联的高吸油树脂PSC
MAs并将其涂覆在PET无纺织物上,可吸附9倍于自重的甲苯Milan制成了以丙烯酸醋为单体,吸油量达72%自重的大孔微球,能够吸附并释放疏水油类、乳油和洗涤剂,可应用于化妆品、清洁剂和制药工业。
在国内方面,直到九十年代,我国一些高校和研究机构才慢慢展开这方面的工作,比如苏州大学、浙江大学、华南理工大学、北京理工大学等少数高校。路健美等以甲基丙烯酸十二酯为单体,BPO为引发剂,采用悬浮聚合法合成了二元共聚高吸油性树脂;朱秀林等采用悬浮聚合法合成低交联度的聚甲基丙烯酸酯的高吸油性树脂;黄岐善等以丙烯酸丁酯和甲基丙烯酸甲酯为单体,二甲基丙烯酸乙二醇酯和邻苯二甲酸二烯丙酯为交联剂,采用悬浮聚合法,合成可吸收甲苯达25g/g的高吸油树脂;刘德荣等以少量的丙烯酸分别与丙烯酸甲酯、丙烯酸丁酯和丙烯酸辛酯进行溶液共聚合,然后以甘油、1,4-丁二醇、环氧树脂为交联剂,合成了丙烯酸自润型高吸油性树脂;朱斌等以甲基丙烯酸脂肪醇为单体,以双烯化合物为交联剂合成了一系列不同结构及不同吸油特性的快速高吸油性树脂;鲁新宇等人以丙烯酸-2-乙基酯和甲基丙烯酸丁酯为单体,在惰性溶剂中进行悬浮聚合,制得内部具有小孔、外形呈蓬松状粒子的高吸油性树脂;朱斌、张兵等采用分散聚合法合成了甲基丙烯酸高碳链脂肪醇酯共聚树脂,树脂吸收率可达95%,并对其吸油性能进行了研究,平均吸油倍数对为20倍;尹国强
、崔英德等以丙烯酸酯与顺丁烯二酸二丁酯为单体,二乙烯基苯为交联剂,采用悬浮法合成二元共聚高吸油性树脂,研究了单体的结构和组成,引发剂用量和交联剂用量对共聚树脂性能的影响;曹爱丽、王强等采用乳液聚合法合成了低交联度的丙烯酸系高吸油树脂,研究了单体种类和配比及破乳方法对产品形态和吸油倍率的影响;蒋必彪、陶国良等用聚氯乙烯和铜试剂二乙基二硫代氨基甲酸钠反应合成了分子链上带有多个引发基团的聚氯乙烯大分子引发剂,用此大分子引发剂引发苯乙烯单体进行接枝聚合反应合成了聚氯乙烯接枝聚苯乙烯新型吸油树脂。虽然有这些研究成果,不过到现在为止,我国依然没有高吸油树脂进行工业化,在这一方面,我国的发展空间还很大,需要国家更多的重视以及科研人员更多的努力来推进该项工程的进展。

本文发布于:2024-09-20 15:20:45,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/783359.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

上一篇:纽甜介绍
标签:吸油   淀粉   树脂   处理   单体
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议