动作捕捉浅析(一)——惯性动作捕捉

动作捕捉浅析(一)——惯性动作捕捉
一、理论概述
 动作捕捉英文Motion capture,简称Mocap。技术涉及尺寸测量、物理空间里物体的定位及方位测定等方面可以由计算机直接理解处理的数据。在运动物体的关键部位设置跟踪器,由Motion capture系统捕捉跟踪器位置,再经过计算机处理后向得到三维空间爱你坐标的数据。当数据被计算机识别后,可以应用在动画制作,步态分析,生物力学,人机工程等领域。
人类命运共同体5个内涵
常用的运动捕捉技术从原理上说可分为惯性、光学式声学式、电磁式。不同原理的设备各有其优缺点,一般可从以下几个方面进行评价:定位精度;实时性;使用方便程度;可捕捉运动范围大小;抗干扰性;多目标捕捉能力;以及与相应领域专业分析软件连接程度。
坩埚炉惯性主要工作原理是跟在人的身上主要的关键点绑定惯性陀螺仪,分析陀螺仪的位移变差来判定人的动作幅度和距离;
光学式 光学式运动捕捉通过对目标上特定光点的监视和跟踪来完成运动捕捉的任务。目
前常见的光学式运动捕捉大多基于计算机视觉原理。从理论上说,对于空间中的一个点,只要它能同时为两部相机所见,则根据同一时刻两部相机所拍摄的图像和相机参数,可以确定这一时刻该点在空间中的位置。当相机以足够高的速率连续拍摄时,从图像序列中就可以得到该点的运动轨迹
声学式常用的声学式运动捕捉装置由发送器、接收器和处理单元组成。发送器是一个固定的超声波发生器,接收器一般由呈三角形排列的三个超声探头组成。通过测量声波从发送器到接收器的时间或者相位差,系统可以计算并确定接收器的位置和方向。Logitech、SAC等公司都生产超声波运动捕捉设备
电磁式:电磁式运动捕捉系统是目前比较常用的运动捕捉设备。一般由发射源、接收传感器和数据处理单元组成。发射源在空间产生按一定时空规律分布的电磁场;接收传感器(通常有10~20个)安置在表演者身体的关键位置,随着表演者的动作在电磁场中运动,通过电缆或无线方式与数据处理单元相连
目前国内使用较多的两种技术为惯性和光学两种技术,所以我们在本文中所讨论的也就对这两种技术进行一下浅析。
二、惯性动作捕捉:
要了解惯性动作捕捉,我们就要首先了解它的重要部件陀螺仪
陀螺仪:
简介
  绕一个支点高速转动的刚体称为陀螺(top)。通常所说的陀螺是特指对称陀螺,它是一个质量均匀分布的、具有轴对称形状的刚体,其几何对称轴就是它的自转轴。 由苍蝇后翅(特化为平衡棒)仿生得来。
学术论文
  在一定的初始条件和一定的外在力矩作用下,陀螺会在不停自转的同时,还绕着另一个固定的转轴不停地旋转,这就是陀螺的旋进(precession),又称为回转效应(gyroscopic effect)。陀螺旋进是日常生活中常见的现象,许多人小时候都玩过的陀螺就是一例。
  人们利用陀螺的力学性质所制成的各种功能的陀螺装置称为陀螺仪(gyroscope),它在科学、技术、军事等各个领域有着广泛的应用。比如:回转罗盘、定向指示仪、炮弹的翻转、陀螺的章动、地球在太阳(月球)引力矩作用下的旋进(岁差)等。
  陀螺仪的种类很多,按用途来分,它可以分为传感陀螺仪和指示陀螺仪。传感陀螺仪用于飞行体运动的自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。指示陀螺仪主要用于飞行状态的指示,作为驾驶和领航仪表使用。
  现在的陀螺仪分为,压电陀螺仪,微机械陀螺仪,光纤陀螺仪,激光陀螺仪,都是电子式的,可以和加速度计价值观念,磁阻芯片,GPS,做成惯性导航控制系统。
 
陀螺仪
结构
  基本上陀螺仪是一种机械装置,其主要部分是一个对旋转轴以极高角速度旋转的转子,转子装在一支架内;在通过转子中心轴XX1上加一内环架,那么
  陀螺仪就可环绕飞机两轴作自由运动;然后,在内环架外加上一外环架;这个陀螺仪有两个平衡环,可以环绕飞机三轴作自由运动,就是一个完整的太空陀螺仪(space gyro)。
历史
  1850年法国的物理学家莱昂·傅科(J.Foucault)为了研究地球自转,首先发现高速转动中的转子(rotor),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字 gyro(旋转)和skopein(看)两字合为gyro scopei 一字来命名这种仪表。
  陀螺仪是一种既古老而又很有生命力的仪器,从第一台真正实用的陀螺仪器问世以来已有大半个世纪,但直到现也,陀螺仪仍在吸引着人们对它进行研究,这是由于它本身具有的特性所决定的。陀螺仪最主要的基本特性是它的稳定性和进动性。人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保持与地面垂直,这就反映了陀螺的稳定性。研究陀螺仪运动特性的理论是绕定点运动刚体动力学的一个分支,它以物体的惯性为基础,研究旋转物体的动力学特性。
编辑本段
陀螺仪原理
  陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。
  在现实生活中,陀螺仪发生的进给运动是在重力力矩的作用下发生的。
编辑本段
陀螺仪特性
  陀螺仪被广泛用于航空、航天和航海领域。这是由于它的两个基本特性:一为定轴性(inertia or rigidity),另一是进动性(precession),这两种特性都是建立在角动量守恒的原则下。
  定轴性
  当陀螺转子以高速旋转时,在没有任何外力矩作用在陀螺仪上时,陀螺仪的自转轴在惯性空间中的指向保持稳定不变,即指向一个固定的方向;同时反抗任何改变转子轴向的力量。这种物理现象称为陀螺仪的定轴性或稳定性。其稳定性随以下的物理量而改变:
  1、转子的转动惯量愈大,稳定性愈好;
  2、转子角速度愈大,稳定性愈好。
  所谓的“转动惯量”,是描述刚体在转动中的惯性大小的物理量。当以相同的力矩分别作用于两个绕定轴转动的不同刚体时,它们所获得的角速度一般是不一样的,转动惯量大的刚体所获得的角速度小,也就是保持原有转动状态的惯性大;反之,转动惯量小的刚体所获得的角速度大,也就是保持原有转动状态的惯性小。
  进动性
  当转子高速旋转时,若外力矩作用于外环轴,陀螺仪将绕内环轴转动;若外力矩作用于内
环轴,陀螺仪将绕外环轴转动。其转动角速度方向与外力矩作用方向互相垂直。这种特性,叫做陀螺仪的进动性。进动角速度的方向取决于动量矩H的方向(与转子自转角速度矢量的方向一致)和外力矩M的方向,而且是自转角速度矢量以最短的路径追赶外力矩。如右图。
 
 
进动方向
这可用右手定则判定。即伸直右手,大拇指与食指垂直,手指顺着自转轴的方向,手掌朝外力矩的正方向,然后手掌与4指弯曲握拳,则大拇指的方向就是进动角速度的方向。
  进动角速度的大小取决于转子动量矩H的大小和外力矩M的大小,其计算式为 =M/H。
  进动性的大小也有三个影响的因素:
  1、外界作用力愈大,其进动角速度也愈大;
  2、转子的转动惯量愈大,进动角速度愈小;
  3、转子的角速度愈大,进动角速度愈小。
编辑本段
陀螺仪功能分类
  利用陀螺仪的动力学特性制成的各种仪表或装置,主要有以下几种:
陀螺方向仪。
  能给出飞行物体转弯角度和航向指示的陀螺装置。它是三自由度均衡陀螺仪,其底座固连
在飞机上,转子轴提供惯性空间的给定方向。若开始时转子轴水平放置并指向仪表的零方位,则当飞机绕铅直轴转弯时,仪表就相对转子轴转动,从而能给出转弯的角度和航向的指示。由于摩擦及其他干扰,转子轴会逐渐偏离原始方向,因此每隔一段时间(如15分钟)须对照精密罗盘作一次人工调整。
陀螺罗盘。
  供航行和飞行物体作方向基准用的寻并跟踪地理子午面的三自由度陀螺仪。其外环轴铅直,转子轴水平置于子午面内,正端指北;其重心沿铅垂轴向下或向上偏离支承中心。转子轴偏离子午面时同时偏离水平面而产生重力矩使陀螺旋进到子午面,这种利用重力矩的陀螺罗盘称摆式罗盘。近年来发展为利用自动控制系统代替重力摆的电控陀螺罗盘,并创造出能同时指示水平面和子午面的平台罗盘。 [1]
陀螺垂直仪。
  利用摆式敏感元件对三自由度陀螺仪施加修正力矩以指示地垂线的仪表,又称陀螺水平仪。陀螺仪的
 
陀螺仪
壳体利用随动系统跟踪转子轴位置,当转子轴偏离地垂线时,固定在壳体上的摆式敏感元件输出信号使力矩器产生修正力矩,转子轴在力矩作用下旋进回到地垂线位置。陀螺垂直仪是除陀螺摆以外应用于航空和航海导航系统的又一种地垂线指示或量测仪表。
陀螺稳定器。
  稳定船体的陀螺装置。20世纪初使用的施利克被动式稳定器实质上是一个装在船上的大型二自由度重力陀螺仪,其转子轴铅直放置,框架轴平行于船的横轴。当船体侧摇时,陀螺力矩迫使框架携带转子一起相对于船体旋进。这种摇摆式旋进引起另一个陀螺力矩,对
纺织材料与应用船体产生稳定作用。斯佩里主动式稳定器是在上述装置的基础上增加一个小型操纵陀螺仪,其转子沿船横轴放置。一旦船体侧倾,小陀螺沿其铅直轴旋进,从而使主陀螺仪框架轴上的控制马达及时开动,在该轴上施加与原陀螺力矩方向相同的主动力矩,借以加强框架的旋进和由此旋进产生的对船体的稳定作用。[2] 博司捷
速率陀螺仪。
  用以直接测定运载器角速率的二自由度陀螺装置。把均衡陀螺仪的外环固定在运载器上并令内环轴垂
 
陀螺仪
直于要测量角速率的轴。当运载器连同外环以角速度绕测量轴旋进时,陀螺力矩将迫使内环连同转子一起相对运载器旋进。陀螺仪中有弹簧限制这个相对旋进,而内环的旋进角正比于弹簧的变形量。由平衡时的内环旋进角即可求得陀螺力矩和运载器的角速率。积分陀螺仪与速率陀螺仪的不同处只在于用线性阻尼器代替弹簧约束。当运载器作任意变速转动时,积分陀螺仪的输出量是绕测量轴的转角(即角速度的积分)。以上两种陀螺仪在远距离测量系统或自动控制、惯性导航平台中使用较多。
陀螺稳定平台。
  以陀螺仪为核心元件,使被稳定对象相对惯性空间的给定姿态保持稳定的装置。稳定平台通常利用由外环和内环构成制平台框架轴上的力矩器以产生力矩与干扰力矩平衡使陀螺仪停止旋进的稳定平台称为动力陀螺稳定器。陀螺稳定平台根据对象能保持稳定的转轴数目分为单轴、双轴和三轴陀螺稳定平台。陀螺稳定平台可用来稳定那些需要精确定向的仪表和设备,如测量仪器、天线等,并已广泛用于航空和航海的导航系统及火控、雷达的万向支架支承。根据不同原理方案使用各种类型陀螺仪为元件。其中利用陀螺旋进产生的陀螺力矩抵抗干扰力矩,然后输出信号控、照相系统。

本文发布于:2024-09-22 16:53:27,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/657238.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:陀螺仪   陀螺   力矩   转子   方向
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议