电网次同步振荡对保护装置的影响

电网次同步振荡对保护装置的影响
  摘要:伴随着国民经济的迅猛发展和人民生活水平的不断提高,人们对电力供应的依赖程度加深,对电力的需求越来越大。且随着电力系统的不断改革,分布式电网的应用改变了传统配电网模式,推动了配电网的更新与发展,但在一定程度上增加了配电网运行难度。大量电力电子器件的应用会引起电力系统中次同步振荡现象,严重影响了电力系统的运行稳定性。本文简单分析了电力系统次同步振荡现象及相关的抑制措施。华夏之声
        关键词:电力系统;同步振荡;抑制措施
        近年来,电网建设规模不断扩张,供电难度和设备负荷随之提高,越来越多的分布式新能源接入配电网。分布式新能源具有环保的优点,应用在电力系统中可以满足社会发展对于电力的需求,有效降低电力运输过程中的损耗,提高供电质量,对我国电力事业的发展有重要的意义。分布能源系统模型高维性、运行方式的不确定性、元件的强非线性、扰动的随机性,使得电力系统稳定现象多变,稳定机理十分复杂,电力系统动态机理与控制越来越困难。此外,由于电网的运行形式不断变化,规模越来越大,大量电力电子设备及系统的应用会使电网呈现不稳定的运行状态,产生低于基波的次同步振荡现象,其安全稳定运行面临严峻挑战。
        一、概述电力系统次同步振荡
        1基本概念
        通过串联电容的形式进行无功补偿可以提高输电线路的输送能力,优化输电线路间的功率分布,并提高电力系统的稳定性,是交流输电系统中广泛采用的方法。但这种方法也可能引发电气系统或汽轮发电机组以小于同步频率的振动频率进行能量交换,称为次同步振荡。在电力系统运行中,针对电网的运行状态,在不同带宽频率下,控制的环节有所不同,如图1所示,在额定频率附近,属于电网同步和电流控制环节,当电力系统受到扰动后,系统平衡点偏移,在这种运行状态下,电网与发电机组之间存在一个或多个低于系统同步频率的频率,在该频率下进行显著能量交换,因而出现次同步谐振现象。
        2产生机理氯化氢气体
巩乃斯林场        次同步振荡在交流输电系统和直流输电系统中的产生机理不同,在交流输电系统由于有谐振回路的存在所以称为次同步谐振,主要从发电机效应、暂态力矩放大作用和机电扭振相互作用三个角度进行描述和分析。第一,发电机效应,假设发电机转子以常速旋转,由于转子的转速高于由次同步电流分量引起的旋转磁场的转速,在次同步频率下从电枢终端分析,转子电阻呈负值,当这个视在负值电阻超过电枢和电网在次同步频率下的等效电
阻的总和时,就会发生电气自振荡,这种自激振荡认为是由过电压和过电流引起的;第二,暂态力矩放大作用,当系统发生干扰时,电磁转矩就会施加于发电机转子上,使发电机轴段承受转矩压力,串联电容补偿输电系统中的干扰,会造成电磁转矩振荡,如果此频率接近于任何转子段的自然振荡频率,会导致转子转矩远远大于无串补系统的三相故障转矩;第三,扭转相互作用,设发电机转子在一个扭转频率fm下发生振荡,fm能导出电枢电压分量频率fem,其表达式为fem=fo+fm,当其中的次同步频率分量接近电气谐振频率fer时,电枢电流产生一个磁场,该磁场能产生使发电机转子振荡加强的转矩,这使次同步电压分量导致的次同步转矩得以维持。
        二、分析次同步振荡对保护装置的影响
        1电力系统振荡是由于系统和发电机并列运行时失去了同步,不能稳定运行,就形成了电力系统震荡,对保护装置造成影响。从而可能造成电网大面积停电,严重的使系统瓦解。根据发生振荡时电力系统是否稳定,可以分为同步振荡和非同步振荡,同步振荡指系统稳定在有限时间内衰减后达到新的平衡;非同步振荡指不稳定系统产生的振荡导致系统和发电机同步运行受到破坏。现在电网结构和发电机组越来越庞大,还出现了低频振荡和次周期振荡。
        2同步振荡异常时,各级保护自动装置动作,会产生海量的报警信息,这些装置动作信息不加选择地涌入监控报警系统,如果同时出现了多种故障并伴随有保护和断路器的拒动、误动时,警报信息在传输中也可能会发生丢失,问题就会变得异常复杂,
        三、加强电力系统次同步振荡抑制措施,减少对保护装置的影响
        1应用滤波器
        第一,应用无源滤波器,该滤波器主要由电感元件、电容元件以及电阻元件组成,这种滤波器一般装设在次同步振荡源的附近交流侧,由L、C元件构成谐振回路,当谐振频率与高次谐波电流频率相匹配时,可以阻止该高次谐波流入电网,其优点是投资较小、维护方便、结构简单等,是同步振荡抑制以及无功补偿的主要措施;第二,应用有源滤波器,有源滤波器产生与振荡波形一致、方向相反的电流,输入需要治理的网络,进而抵消非线性负荷产生的振荡电流,使得电网中仅含基波电流,随着PWM控制技术、全控型半导体器件的成熟和基于瞬时无功理论的检测理论的提出,有源电力滤波器得到了迅速发展。
        2提高阻尼
        电力系统次同步振荡是一种振荡失稳现象,增加振荡模态的阻尼是一种有效的抑制手段,如采用FACTS装置、SSDC和附加励磁阻尼控制器,均是在此基础上对次同步振荡进
行控制和抑制。此外,励磁系统阻尼器针对汽轮发电机的扭转振荡来调制系统的输出。来自转子振荡的信号移相放大之后,通过励磁系统控制增加系统的有效阻尼来抑制次同步振荡。对于电网与发电机组转子之间相互作用产生的次同步振荡现象,除增加阻尼外,还可在电路中附加阻塞滤波器、旁路阻尼滤波器、线路滤波器和动态滤波器等,通过阻断相应的次同步电气量通道也能有效地抑制次同步振荡。
灯光王愿坚        3应用轴系扭振保护装置
        当次同步振荡对发电机组的运行安全造成巨大影响时,可以应用轴系扭振保护装置,通过事故告警、保护跳闸及采取切除机组的形式抑制次同步振荡。轴系扭振保护装置监测的参数是发电机的轴系转速、轴系的寿命疲劳定值、次同步振荡的幅度。将相关事故机组切除后,电力系统中的负阻尼状况消失,再通过原动机的配合可以使转矩在短时间内减小,从而避免次同步振荡和轴系扭振影响扩大。对于剩余的在线机组,切除机组将改变系统结构和等效串补度,一定程度上能增强在线机组的模态阻尼,有利于抑制次同步振荡。
        4应用可控串联补偿装置
        可控串联补偿装置由一个串联电容器与一个晶闸管控制电抗器并联组成,串联在输电线路中,对提高电力系统性能有很大的作用,具有控制潮流、限制受端故障短路电流、提
高系统稳定性、抑制系统低频振荡和抑制系统次同步振荡等功能。近年来,关于可控串联补偿装置抑制次同步振荡的研究成果很多,国内外发表了不少文章。目前,大多数的FACTS装置在抑制次同步振荡方面的研究还处于测试阶段,但可控串联补偿装置已投入到实际的工程运行中,在美国、巴西、瑞典等地已有多套可控串补装置投入运行,现场试验表明其确有抑制次同步振荡的能力,并且还具有抑制大干扰下暂态力矩放大作用的能力。
        四、结束语
冷气机组        总而言之,次同步振荡是我国现代电力系统安全稳定运行重大问题之一。随着新能源在电网的渗透率越来越高,次同步振荡发生的频率变化范围不断扩大、各类问题交互作用、激发次同步振荡的原因错综复杂。电力企业要针对次同步振荡的特点,加强电力系统次同步振荡抑制措施,减少对保护装置的影响,确保用电。
        参考文献:
        [1]王瑞闯.电力系统次同步振荡抑制方法概述[J].电网与清洁能源,2018
渴慕        [2]吴熙,蒋平,电力系统稳定器对次同步振荡的影响及其机制研究[J].中国电机工程学报,2016
        [3]王云洁.电力系统次同步振荡的抑制策略研究[J].机械管理开发,2016

本文发布于:2024-09-21 17:37:10,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/596862.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:振荡   系统   频率   运行
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议