铁电材料中的极性拓扑结构

专题:电介质材料和物理
铁电材料中的极性拓扑结构*
谭丛兵1)2)    钟向丽2)    王金斌2)†
1) (湖南科技大学物理与电子科学学院, 湘潭 411201)
2) (湘潭大学材料科学与工程学院, 湘潭 411105)
(2020 年2 月28日收到; 2020 年3 月27日收到修改稿)
物价法
调控磁性材料中的自旋拓扑结构(流量闭合型、涡旋、半子(meron)、斯格明子(skyrmion)等自旋组态)可以改进材料的磁性和电磁性能, 因而引起了学术界的广泛关注. 最近研究表明, 在尺寸效应、界面耦合及其相互作用、外延应变等作用下, 铁电材料中也会出现自发的极性拓扑畴结构, 同时表现出新的铁电相结构和丰富的物理性能. 本文总结了铁电纳米结构、铁电薄膜和铁电超晶格中的极性拓扑畴结构类型及其形成机理, 分析了这些极性拓扑结构与铁电、压电、介电、光电性能之间的关联, 并分别讨论了铁电材料中极性拓扑结构的整体拓扑相变调控和单个极性拓扑结构的外场调控, 最后展望了极性拓扑结构未来的可能研究方向.big 4大四喜
关键词:铁电材料, 铁电畴, 极性拓扑结构, 调控
盐盆PACS:77.80.Dj, 75.70.Kw, 77.84.–s, 75.60.Ch DOI: 10.7498/aps.69.20200311
双眼台风1  引 言
大同烟草网
审核员铁电材料在室温下存在非挥发性的铁电自发极化, 外加电场可以改变极化方向. 局部有序的自发极化形成的铁电畴和畴壁结构很大程度上决定了铁电材料的铁电性、压电性、介电性、热释电性、电光效应等特性. 铁电畴结构在纳米尺度上可调控, 使铁电材料在数据存储/处理、传感、谐振和能源等先进纳米功能器件中具有重大应用潜力[1−9].例如, 基于电场作用下铁电畴翻转的低维铁电结构可以用来制备下一代高密度铁电非挥发性随机存储器[5,10−12]. 但随着存储器的密度增加到Gbit/in2量级, 存储数据的独立存储单元尺寸已经减小到约10 nm, 尺寸缩减将产生明显的尺寸效应和表面效应, 进而引起铁电材料中的畴结构发生变化, 这将会影响存储数据的存储、读取, 甚至会使存储的数据失效[13]. 因此, 依靠传统的存储单元尺寸减小来提高存储密度的方法已经大受限制, 更小的新信息存储单元的研究将需要另辟蹊径.
2013年, 诺贝尔物理学奖获得者Fert 教授等[14]提出以具有拓扑保护特性的磁性拓扑缺陷(如磁斯格明子)作为信息存储单元, 用其存在与否来记录二进制信息的“1”和“0”, 可实现非接触式读写,引起了人们在磁性自旋自发形成的磁性拓扑结构在纳米自旋电子学的潜在应用方面的极大兴趣. 但是研究人员在实验上观测到的磁性拓扑结构尺寸都在20 nm以上[15−21], 这引出了一个问题: 在铁电材料中, 与磁性
材料中的磁性自旋结构类似的电偶极子(自发铁电极化)是否可以实现类似排列,形成更小尺寸的极性拓扑结构. Naumov等[22]曾采用第一性原理计算, 预言铁电纳米点中可能存在尺寸小至3.2 nm的双稳态极性涡旋畴结构, 并从理论上推测基于这种极性拓扑结构的信息存储单元理论上可以实现面积密度超过60 Tbit/in2的超高密度存储器. 最近几年来, 陆续有研究人员通过
*  国家自然科学基金(批准号: 11875229, 51872251)资助的课题.
†  通信作者. E-mail: jbwang@xtu.edu
© 2020 中国物理学会  Chinese Physical Society wulixb.iphy.ac 物 理 学 报  Acta  Phys.  Sin.  Vol. 69, No. 12 (2020)    127702
127702-1

本文发布于:2024-09-23 08:23:08,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/593579.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:结构   拓扑   铁电
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议