模糊控制综述 文档

模糊控制有二种不同的含义。从狭义上讲,模糊控制是一个多值的延期逻辑系统。然而,从广义上讲,模糊控制几乎与模糊集理论同义,是一种涉及到隶属度函数对象类与模糊边界程度的问题。从这个角度来讲,模糊控制在其狭义是FL的分支。即使在比较狭义的定义上,模糊控制在概念和实质上与传统的多值逻辑系统也有不同。
模糊控制基本就是一个语言变量,这个变量其值是文字而不是数字。实际上,大部分的FL可能被视为一种计算方法,对文字而不是数字。虽然语言是天生不如数字精确,但它们的使用更接近人类的直觉。此外,用语言来计算利用了宽泛和不准确,从而降低了解决方案的成本。
FL的另一种基本概念,起着在其应用中最核心作用,是一个模糊的温度自动控制系统if - then规则,或者简单地说,模糊规则。虽然以规则为基础的系统在所使用的人工智能系统中有悠久的历史,但在这种系统中缺少的是一个具有模糊前因和模糊处理的机制。在模糊控制中,这种机制所提供的是模糊规则演算。微积分的模糊规则作为一种可称为模糊依赖和命令语言(FDCL)的基础。虽然FDCL不明确在工具箱中使用,但这是其主要有效成分之一。在模糊控制中,在大
多数的应用模糊控制理论的解决办法是,在实际生活中, FDCL翻译成人类的解决方案。
在能见度越来越涉及到使用模糊逻辑与神经计算相结合和遗传算法有一个越来越明显的趋势。更一般地,模糊逻辑,神经计算,遗传算法可作为可称之为软计算的主要成分。不同于传统的硬计算,软计算容纳现实世界的不精确性。软计算的指导原则是:实施不精确的局部真理,不确定性,实现可追踪性,鲁棒性和耐受性解决方案的成本低。在未来,软计算中可发挥的作用越来越重要的概念和系统的MIQ(机器智商)比传统方法设计更高的设计系统,。
在各种组合中的软计算方法,知名度最高的是模糊控制和神经计算,以及神经模糊系统。在模糊控制这样的系统中发挥了从观测规则感应特别重要的作用。亲核反应Dr. Roger Jang为此制定了被称为自适应模糊神经网络(自适应神经模糊推理系统)的有效方法。
模糊控制是一个迷人的研究领域,因为它的交易之间的意义和精密的东西,可以使人类平衡已经经营了很长时间的的管理工作。
从这个意义上讲,模糊逻辑既是新的又是旧的,因为虽然在模糊控制中有条理的现代科学是还很年轻,但模糊逻辑推理的概念对人类古老技能的很依赖。
下面是关于模糊控制的一般性意见清单:
模糊逻辑在概念上容易理解。
甘氨酸乙酯模糊推理背后的数学概念是非常简单的。模糊逻辑是没有意义深远的复杂性更直观的方法。
  模糊逻辑是灵活的。
对于任何给定的系统,很容易就没有更多的功能层再次从头开始。
模糊逻辑容许不准确的数据。
如果你仔细看一切都是不确切的,但更重要的是,大多数事情都是不精确甚至仔细检查。模糊推理的基础上,而不是追踪结束时将这个过程的了解。
模糊逻辑可以模拟任意复杂的非线性函数。
你可以创建一个模糊系统匹配任何的输入输出数据集。这个过程是由简单的自适应技术,特别是像自适应神经模糊推理系统(ANFIS)进行,这是在模糊逻辑工具箱的软件。
模糊逻辑可以建立在专家经验之上。
在直接对比的神经网络,参加培训的数据和产生不透明的,坚不可摧的模型,模糊控制,让你已经知道你对系统经验的依赖。
模糊控制理论,可与传统技术混合。
模糊系统不一定取代传统的控制方法。在许多情况下,模糊系统增强他们并简化其执行情况。
模糊逻辑是基于自然语言。
深证a股指数模糊逻辑理论是人类交流的基础。这个观察的基础关于模糊逻辑的其他许多发言。因为模糊逻辑是定性描述,在日常语言中使用的结构建造,模糊逻辑是简单易用。
最后陈述也许是最重要的,应值得更多的讨论。自然语言,这是老百姓日常使用的基础,已形成了人类几千年的历史要方便和高效。在普通的语言代表了有效的沟通方式。
模糊逻辑是不是包治百病,当你不应该使用模糊逻辑?安全因素是第一个提出在此介绍:模糊逻辑是一种方便的方式输入空间映射到输出的空间。如果你到它的不方便,尝试别
的东西。如果已经存在一个简单的解决方案,使用它。当你实现它,你可能会做出正确的决定。许多控制器,举例说,不使用模糊控制能更好的工作。不过,如果你花时间去熟悉模糊控制,你会看到它可以作为处理不精确和非线性快速,高效地非常有力的工具。
Description of Fuzzy Logic
Fuzzy logic has two different meanings. In a narrow sense, fuzzy logic is a logical system, which is an extension of multivalued logic. However, in a wider sense fuzzy logic (FL) is almost synonymous with the theory of fuzzy sets, a theory which relates to classes of objects with unsharp变身宝贝 boundaries in which membership is a matter of degree. In this perspective, fuzzy logic in its narrow sense is a branch of FL. Even in its more narrow definition, fuzzy logic differs both in concept and substance from traditional multivalued logical systems.
The basic concept underlying FL is that of a linguistic variable, that is, a variable whose values are words rather than numbers. In effect, much of FL may be viewed as a methodology for computing with words rather than numbers. Although words are inherentl
摩托罗拉e375y less precise than numbers, their use is closer to human intuition. Furthermore, computing with words exploits the tolerance for imprecision and thereby lowers the cost of solution.
Another basic concept in FL, which plays a central role in most of its applications, is that of a fuzzy if-then rule or, simply, fuzzy rule. Although rule-based systems have a long history of use in AI, what is missing in such systems is a mechanism for dealing with fuzzy consequents and fuzzy antecedents. In fuzzy logic, this mechanisms provided by the calculus of fuzzy rules. The calculus of fuzzy rules serves as a basis for what might be called the Fuzzy Dependency and Command Language (FDCL). Although FDCL is not used explicitly in the toolbox, it is effectively one of its principal constituents. In most of the applications of fuzzy logic, a fuzzy logic solution is, in reality, a translation of a human solution into FDCL.
A trend that is growing in visibility relates to the use of fuzzy logic in combination with neurocomputing and genetic algorithms. More generally, fuzzy logic, neurocomputing, an
d genetic algorithms may be viewed as the principal constituents of what might be called soft computing. Unlike the traditional, hard computing, soft computing accommodates the imprecision of the real world. The guiding principle of soft computing is: Exploit the tolerance for imprecision, uncertainty, and partial truth to achieve tractability, robustness, and low solution cost. In the future, soft computing could play an increasingly important role in the conception and design of systems whose MIQ (Machine IQ) is much higher than that of systems designed by conventional methods.
Among various combinations of methodologies in soft computing, the one that has highest visibility at this juncture is that of fuzzy logic and neurocomputing, leading to neuro-fuzzy systems. Within fuzzy logic, such systems play a particularly important role in the induction of rules from observations. An effective method developed by Dr. Roger Jang for this purpose is called ANFIS (Adaptive Neuro-Fuzzy Inference System).
Fuzzy logic is a fascinating area of research because it does a good job of trading off between significance and precision—something that humans have been managing for a very long time.
In this sense, fuzzy logic is both old and new because, although the modern and methodical science of fuzzy logic is still young, the concepts of fuzzy logic relies on age-old skills of human reasoning.

本文发布于:2024-09-21 04:30:34,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/582623.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:逻辑   模糊控制   系统   使用
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议