正态分布的概念和特征

正态分布的概念和特征
一、正态分布的概念
由表1.1的频数表资料所绘制的直方图,图3.1(1)可以看出,高峰位于中部,左右两侧大致对称。我们设想,如果观察例数逐渐增多,组段不断分细,直方图顶端的连线就会逐渐形成一条高峰位于中央(均数所在处),两侧逐渐降低且左右对称,不与横轴相交的光滑曲线图  3.1(3)。这条曲线称为频数曲线或频率曲线,近似于数学上的正态分布(normal distribution)。由于频率的总和为100%或1,故该曲线下横轴上的面积为100%或1。
图3.1频数分布逐渐接近正态分布示意图
为了应用方便,常对正态分布变量X作变量变换。
(3.1)
该变换使原来的正态分布转化为标准正态分布(standard normal distribution),亦称u分布。u被称为标准正态变量或标准正态离差(standard normal deviate)。
二、正态分布的特征:
1.正态曲线(normal curve)在横轴上方均数处最高。
2.正态分布以均数为中心,左右对称。
3.正态分布有两个参数,即均数和标准差。是位置参数,当固定不变时,越
大,曲线沿横轴越向右移动;反之,越小,则曲线沿横轴越向左移动。是形状参数,当固定不变时,越大,曲线越平阔;越小,曲线越尖峭。通常用表示均
数为,方差为的正态分布。用N(0,1)表示标准正态分布。
4.正态曲线下面积的分布有一定规律。
实际工作中,常需要了解正态曲线下横轴上某一区间的面积占总面积的百分数,以便估计该区间的例数占总例数的百分数(频数分布)或观察值落在该区间的概率。正态曲线下一定区
间的面积可以通过附表1求得。对于正态或近似正态分布的资料,已知均数和标准差,就可对其频数分布作出概约估计。
查附表1应注意:①表中曲线下面积为-∞到u的左侧累计面积;②当已知μ、σ和X时先按式(3.1)求得u值,再查表,当μ、σ未知且样本含量n足够大时,可用样本均数和标
准差S分别代替μ和σ,按式求得u值,再查表;③曲线下对称于0的区间
面积相等,如区间(-∞,-1.96)与区间(1.96,∞)的面积相等,④曲线下横轴上的总面积为100%或1。
正态分布曲线下有三个区间的面积应用较多,应熟记:①标准正态分布时区间(-1,1)或正态分布时区间(μ-1σ,μ+1σ)的面积占总面积的68.27%;②标准正态分布时区间(-1.96,1.96)或正态分布时区间(μ-1.96σ,μ+1.96σ)的面积占总面积的95%;③标准正态分布时区间(-2.58,2.58)或正态分布时区间(μ-2.58σ,μ+2.58σ)的面积占总面积的99%。如图3.2所示。
图3.2 正态曲线与标准正态曲线的面积分布
normal distribution
正态分布
一种概率分布。正态分布是具有两个参数μ和σ^2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ^2是此随机变量的方差,所以正态分布记作N(μ,σ^2 )。服从正态
分布的随机变量的概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。它的形状是中间高两边低,图像是一条位于x轴上方的钟形曲线。当μ=0,σ^2 =1时,称为标准正态分布,记为N(0,1)。μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。
正态分布最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。
生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。例如,在生产条件不变的情况下,产品的强力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量,等等。一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布(见中心极限定理)。从理论上看,正态分布具有很多良好的性质,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。品控第三方检测机构>王安忆天香
正态分布应用最广泛的连续概率分布,其特征是“钟”形曲线。
正态分布公式
附:这种分布的概率密度函数为:(如右图)
正态分布
1.正态分布:若已知的密度函数(频率曲线)为正态函数(曲线)则称已知曲线服从正态分布,记号~。其中μ、σ^2 是两个不确定常数,是正态分布的参数,不同的μ、不同的σ^2对应不同的正态分布。
正态曲线呈钟型,两头低,中间高,左右对称,曲线与横轴间的面积总等于1。
2.正态分布的特征:服从正态分布的变量的频数分布由μ、σ完全决定。人物特稿
集中性:正态曲线的高峰位于正中央,即均数所在的位置。对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。
医患关系怎么了
均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。
正态分布有两个参数,即均数μ和标准差σ,可记作N(μ,σ):均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度。σ越小,曲线越陡峭;σ越大,曲线越扁平。
u变换:为了便于描述和应用,常将正态变量作数据转换。μ是正态分布的位置参数,描述正态分布的集中趋势位置。正态分布以X=μ为对称轴,左右完全对称。正态分布的均数、中位数、众数相同,均等于μ。
σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。
标准正态曲线
标准正态曲线N(0,1)是一种特殊的正态分布曲线,以及标准正态总体在任一区间(a,b)内取值概率。
赫尔辛基宣言“小概率事件”和假设检验的基本思想“小概率事件”通常指发生的概率小于5%的事件,认为在一次试验中该事件是几乎不可能发生的。这种认识便是进行推断的出发点。关于这一点我们要有以下两个方面的认识:一是这里的“几乎不可能发生”是针对“一次试验”来说的,因为试验次数多了,该事件当然是很
可能发生的;二是当我们运用“小概率事件几乎不可能发生的原理”进行推断时,我们也有5%的犯错误的可能。
正态曲线下面积分布
1.实际工作中,正态曲线下横轴上一定区间的面积反映该区间的例数占总例数的百分比,或变量值落在该区间的概率(概率分布)。不同范围内正态曲线下的面积可用公式计算。
2.几个重要的面积比例轴与正态曲线之间的面积恒等于1。正态曲线下,横轴区间(μ-σ,
μ+σ)内的面积为68.268949%,横轴区间(μ-1.96σ,μ+1.96σ)内的面积为95.449974%,横轴区间(μ-2.58σ,μ+2.58σ)内的面积为99.730020%。
标准正态曲线
1.标准正态分布是一种特殊的正态分布,标准正态分布的μ和σ^2为0和1,通常用ξ(或Z)表示服从标准正态分布的变量,记为Z~N(0,1)。
2.标准化变换:此变换有特性:若原分布服从正态分布,则Z=(x-μ)/σ ~N(0,1) 就服从标准正态分布,通过查标准正态分布表就可以直接计算出原正态分布的概率值。故该变换被称为标准化变换。
3. 标准正态分布表:标准正态分布表中列出了标准正态曲线下从-∞到X(当前值)范围内的面积比例。
一般正态分布与标准正态分布的转化
由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。“小概率事件”和假设检验的基本思想“小概率事件”通常指发生的概率小于5%的事件,认为在一次试验中该事件是几乎不可能发生的。这种认识便是进行推断的出发点。关于这一点我们要有以下两个方面的认识:一是这里的“几乎不可能发生”是针对“一次试验”来说的,因为试验次数多了,该事件当然是很可能发生的;二是当我们运用“小概率事件几乎不可能发生的原理”进行推断时,我们也有5%的犯错误的可能。
一般正态分布与标准正态分布的区别与联系
正态分布也叫常态分布,是连续随机变量概率分布的一种,自然界、人类社会、心理和教育中大量现象均按正态形式分布,例如能力的高低,学生成绩的好坏等都属于正态分布。标准正态分布是正态分布的一种,具有正态分布的所有特征。所有正态分布都可以通过Z 分数公式转换成标准正态分布。
两者特点比较:
(1)正态分布的形式是对称的,对称轴是经过平均数点的垂线。男生女生银版文章
(2)中央点最高,然后逐渐向两侧下降,曲线的形式是先向内弯,再向外弯。
(3)正态曲线下的面积为1。正态分布是一族分布,它随随机变量的平均数、标准差的大小与单位不同而有不同的分布形态。标准正态分布是正态分布的一种,其平均数和标准差都是固定的,平均数为0,标准差为1。
(4)正态分布曲线下标准差与概率面积有固定数量关系。所有正态分布都可以通过Z 分数公式转换成标准正态分布。
主要特征
1.集中性:正态曲线的高峰位于正中央,即均数所在的位置。
2.对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。
3.均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。
4.正态分布有两个参数,即均数μ和标准差σ,可记作N(μ,σ):均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度。σ越小,曲线越陡峭;σ越大,曲线越扁平。
5.u变换:为了便于描述和应用,常将正态变量作数据转换。
3σ原则
正态分布曲线性质:1.当x<μ时,曲线上升;当x>μ时,曲线下降。当曲线向左右两边无限延伸时,以x轴为渐近线。2.正态曲线关于直线x=μ对称。3.σ越大,正态曲线越扁平;σ越小,正态曲线越尖陡。4.在正态曲线下方和x轴上方范围内区域面积为1。3σ原则:P(μ-σ<X≤μ+σ)=68.3%P(μ-2σ<X≤μ+2σ)=95.4%P(μ-3σ<X≤μ+3σ)=99.7%
编辑本段历史发展
正态分布是最重要的一种概率分布。正态分布概念是由德国的数学家和天文学家Moivre 于1733年首次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。高斯是一个伟大的数学家,重要的贡献不胜枚举。但现今德国10马克的印有高斯头像的钞票,其上还印有正态分布的密度曲线。这传达了一种想法:在高斯的一切科学贡献中,其对人类文明影响最大者,就是这一项。在高斯刚作出这个发现之初,也许人们还只能从其理论的简化上来评价其优越性,其全部影响还不能充分看出来。这要到20世纪正态小样本理论充分发展起来以后。拉普拉斯很快得知高斯的工作,并马上将其与他发现的中心极限定理联系起来,为此,他在即将发表的一篇文章(发表于1810年)上加上了一点补充,指出如若误差可看成许多量的叠
加,根据他的中心极限定理,误差理应有高斯分布。这是历史上第一次提到所谓“元误差学说”——误差是由大量的、由种种原因产生的元误差叠加而成。后来到1837年,海根(G.Hagen)在一篇论文中正式提出了这个学说。
其实,他提出的形式有相当大的局限性:海根把误差设想成个数很多的、独立同分布的“元误差” 之和,每只取两值,其概率都是1/2,由此出发,按狄莫佛的中心极限定理,立即就得出误差(近似地)服从正态分布。拉普拉斯所指出的这一点有重大的意义,在于他给误差的正态理论一个更自然合理、更令人信服的解释。因为,高斯的说法有一点循环论证的气味:由于算术平均是优良的,推出误差必须服从正态分布;反过来,由后一结论又推出算术平均及最小二乘估计的优良性,故必须认定这二者之一(算术平均的优良性,误差的正态性) 为出发点。但算术平均到底并没有自行成立的理由,以它作为理论中一个预设的出发点,终觉有其不足之处。拉普拉斯的理论把这断裂的一环连接起来,使之成为一个和谐的整体,实有着极重大的意义

本文发布于:2024-09-23 13:26:53,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/570176.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:正态分布   曲线   标准
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议