论文翻译——超表面理论及应用

启东市人民医院超表面理论及应用-超材料的平面化
An Overview of the Theory and Applications of Metasurfaces: The Two—Dimensional Equivalents of Metamaterials中央经线
Christopher L. Holloway1, Edward F。 Kuester2, Joshua A. Gordon1, John O’Hara3,
Jim Booth1, and David R. Smith4                          三碗  译
摘要
超材料通常由按一定规律排布的散射体或者通孔构成,由此来获得一定的性能指标。这些期望的特性通常是天然材料所不具备的,比如负折射率和近零折射率等.在过去的十年里,超材料从理论概念走到了市场应用。3D超材料也可以由二维表面来代替,也就是超表面,它是由很多小散射体或者孔组成的平面结构,在很多应用中,超表面可以达到超材料的效果。超表面在占据的物理空间上比3D超材料有着优势,由此,超表面可以提供低耗能结构。文章中将讨论到超表面特性的理论基础和它们不同的应用。我们也将可以看出超表面和传统的频率选择表面的区别.
王孟英
在电磁领域超表面有着很广泛的应用(从微波到可见光波段),包括智能控制表面、小型化的谐振腔、新型波导结构、角独立表面、吸收器、生物分子设备、THz调制和灵敏频率调节材料等等。文中综述了近几年这种材料或者表面的发展,并让我们更加接近一百年前拉姆和Pocklington或者之后的Mandel和Veselago所提出的令人惊讶的观点。
引言
    最近这些年,超材料这方面一直引领着材料的潮流。超材料是一种新的人工合成材料来得到自然材料所不具备的一些特性。在电磁背景中,这方面最早的实例就是人工电介质。之后,我们将会看到和经典结构完全不同的超材料和超表面,比如光子能带隙结构(PBG)、频率选择表面(FSS)。双负指数(DNG)超材料是一种盛行的超材料,也叫作负指数材料(NIM)、左手材料等(LHM)。这种材料的特性是在给定的频率带宽内其有效介电常数和磁导率是负的。另一种特性是近零折射率。在这种材料中,其介电常数和磁导率都被设计成接近于零。拥有这些特性的材料可以应用在很宽的频率范围(微波到可见光频段),并且其应用也很广泛,如隐身、低反射材料、新型结构、天线、电子调谐、超透镜和谐振器等.
先解风情后解衣
现在的超材料研究来源于对Bexelago理论的仿真,或者是基于之后Pendry、Smith等人所实现的超材料结构。然而,这个领域中很多研究者并没有认识到负折射率超材料的概念和它们令人吃惊的性能可以回溯至那么早的时间段。实际上,这种材料的理论可以回推到一个世纪以前。早在1967年,一些学者已经对超材料做出了研究,而更早的Sivukhin在1957年对超材料的特性做了简单的描述。Malyuzhinets和Silin都相信L。I。Mandel在更早的时间里做过超材料研究。Mandel提到关于Lamb的1904年的报纸,称Lamb或许是这一领域的第一人。Lamb提出了反波的存在性(在相反方向上拥有相位和速度的波,他的实例包含机械系统而不是电磁波)。Schuster在他1904年的可见光书中简短的谈及了Lamb的工作,并提出了在可见光介质中或许也有着反波的特性。1905年,Pocklington展示在某种情况下静止的自行车链条可以产生反波,加上突然的激励可以产生一种拥有远离波源的速度和朝向波源的相速度.tv搜查线
超材料通常是用规律排列的小散射体构成的结构,以此来获得期望的性能.超材料可以被扩展成二维分布的电子散射体图1。图1a阐述一种普遍的散射体排布,而图1b—1d展示更多的特殊例子。图1b展示一种金属散射体排布,它可以获得与经典开口环结构所产生的磁响应类似的电响应。图1c展示一种球粒阵列(基于此引入了3D超材料,来源于早期Lewin的工作,
但更早的是100年前Gans和Happel的预测)。图1d为陶立方排布。超材料的这种表面结构最初命名为超薄膜,表示一个表面上分布着小的散射体。值得一提的是每个散射体的都是很薄的(甚至比晶格常数小),可以有任意的形状,可以有亚波长尺度。与超材料类似,超薄膜也可以通过其散射体的排布来有其特有的电磁特性。超薄膜又称超表面或单层超材料。在1.1和1。2部分我们将简化其称呼。
对于很多应用,超表面可以用于放置超材料。超表面相对于3D超材料来说有着占有更小物理空间的优势,由此,超表面可以提供更低能耗的结构。近几年,超表面在从微波到可见光波段的应用取得了巨大的成就。除了可用在上面所说的超材料的应用外,超表面还可以实现智能表面控制、小型化谐振腔、新型波导结构、简单而宽角度吸收器、阻抗匹配表面和生物分子器件.下面也将会更详细的谈到其中的一些应用。
1。1 超表面与频率选择表面
下面说一说超材料(MM)和传统光子带隙(PBG)或电磁带隙(EBG)结构之间的区别,另外超材料和传统频率选择表面(FSS)的区别.第一种超材料可以使用超表面来发展创新。对于超材料来说,能熟知周期材料在不同频率或者不同尺寸的电磁响应非常重要。这种复合材料可以分成三种完全不同的部分(图2).对于3D超材料来说,第一部分是准静态部分。这就暗含低频的意思(亚波长段频率)。这种散射体将会具有诱导的或者永久的偶极柜,这也是经典材料的性质。另外,这种散射体可以通过改变形状或者位置来获得想要性质的人工复合材料。在这一部分,描述使用经典的材料混合来得到目标特性(介电常数、磁导率)
当波长可以与结构周期相近或者比周期小时,会有特别的响应发生,见图2的第三部分。在这种频率下,存在一种更加复杂的场,这就需要用更加精密的分析技术(全波方法)。传统的分析方法是Floquet-Bloch理论,其中的场扩展到有各种不同方向的平面波.当波长接近周期时,就需要考虑到更高要求的Floquet-Bloch理论。这种高要求模型就会通过复合材料干扰基波的传播,在这种频率范围中我们称复合材料为光子带隙或者电磁带隙材料。在某种频率范围,光子带隙和电磁带隙材料会阻碍到EM波的传播,这种频率带就称为阻带.别的频率中,这种材料的通过率很高,这种频率就为通带。布拉格散射效应就是与这种频率有联系,它是很多实际应用的基础。
图2的第二部分也是处在亚波长结构,不过期单元散射体可以达到共振。这就实现了另一种人工材料(MM),实现了自然材料所没有的特性(如双负或近零指数材料).第二部分,那些共振体是其成为超材料的原因所在。我们可以通过有效介电常数和磁导率来标明超材料的特性。

本文发布于:2024-09-23 12:34:03,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/506149.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:材料   表面   结构   频率   散射体   特性   应用   理论
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议