数值分析 李庆扬 王能超 易大义著华中科技大学出版社第5版 答案

第一章  绪论
1.设,的相对误差,求的误差。
解:近似值的相对误差为
的误差为
进而有
2.设的相对误差为2%,求的相对误差。
解:设,则函数的条件数为
,
为2
3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:, , , ,
解:是五位有效数字;
是二位有效数字;
是四位有效数字;
是五位有效数字;
是二位有效数字。
4.利用公式(2.3)求下列各近似值的误差限:(1),(2),(3).
其中均为第3题所给的数。
解:
5计算球体积要使相对误差限为1,问度量半径R时允许的相对误差限是多少?
解:球体体积为
则何种函数的条件数为
故度量半径R时允许的相对误差限为
6.设,按递推公式  (n=1,2,…)
计算到。若取(5位有效数字),试问计算将有多大误差?
解:
……
依次代入后,有
若取,
的误差限为
7.求方程的两个根,使它至少具有4位有效数字()。
解:
故方程的根应为
具有5位有效数字
具有5位有效数字
8.当N充分大时,怎样求
9.正方形的边长大约为了100cm,应怎样测量才能使其面积误差不超过
解:正方形的面积函数为
.
时,若,
故测量中边长误差限不超过0.005cm时,才能使其面积误差不超过
10.设,假定g是准确的,而对t的测量有秒的误差,证明当t增加时S的绝对误差增加,而相对误差却减少。
解:
   
增加时,的绝对误差增加
增加时,保持不变,则的相对误差减少。
11.序列满足递推关系(n=1,2,…),
(三位有效数字),计算到时误差有多大?这个计算过程稳定吗?
解:
 
 
 
 
 
计算到时误差为,这个计算过程不稳定。
12.计算,取,利用下列等式计算,哪一个得到的结果最好?
解:设
,则
若通过计算y值,则
若通过计算y值,则
若通过计算y值,则
通过计算后得到的结果最好。
13.,求的值。若开平方用6位函数表,问求对数时误差有多大?若改用另一等价公式。
计算,求对数时误差有多大?
,
若改用等价公式
此时,
第二章 插值
1.当时,,求的二次插值多项式。
解:
则二次拉格朗日插值多项式为
   
2.给出的数值表
X
0.4
0.5
0.6
0.7
0.8
lnx
-0.916291
-0.693147
-0.510826
-0.356675
-0.223144
用线性插值及二次插值计算的近似值。
解:由表格知,
若采用线性插值法计算
   
若采用二次插值法计算时,
   
3.给全的函数表,步长若函数表具有5位有效数字,研究用线性插值求近似值时的总误差界。
解:求解近似值时,误差可以分为两个部分,一方面,x是近似值,具有5位有效数字,在此后的计算过程中产生一定的误差传播;另一方面,利用插值法求函数的近似值时,采用的线性插值法插值余项不为0,也会有一定的误差。因此,总误差界的计算应综合以上两方面的因素。
时,
时,线性插值多项式为
插值余项为
在建立函数表时,表中数据具有5位有效数字,且,故计算中有误差传播过程。
总误差界为
4.设为互异节点,求证:
(1)   
(2)   
证明
(1)
若插值节点为,则函数次插值多项式为
插值余项为
 
  由上题结论可知
得证。
5设求证:
解:令,以此为插值节点,则线性插值多项式为
    =
插值余项为吕氏春秋下贤
6.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函数表的步长h应取多少?
解:若插值节点为,则分段二次插值多项式的插值余项为
设步长为h,即
若截断误差不超过,则
7.若
解:根据向前差分算子和中心差分算子的定义进行求解。
   
   
章平8.如果是m次多项式,记,证明的k阶差分次多项式,并且为正整数)。
解:函数展式为
其中
是次数为鱼的资料的多项式
       
阶多项式
阶多项式
依此过程递推,得次多项式
是常数
为正整数时,
9.证明
证明
       
得证
10.证明
证明:由上题结论可知
得证。
11.证明
证明
           
得证。
12.若个不同实根
证明:
证明: 有个不同实根
     
得证。
13.证明阶均差有下列性质:
(1)若,则
(2)若,则
证明:
(1)
             
             
             
得证。
           
           
            +
           
得证。
14.
解:
15.证明两点三次埃尔米特插值余项是
   
解:
,且插值多项式满足条件
插值余项为
由插值条件可知
可写成
其中是关于的待定函数,
现把看成上的一个固定点,作函数
根据余项性质,有
由罗尔定理可知,存在,使
上有四个互异零点。
根据罗尔定理,的两个零点间至少有一个零点,
内至少有三个互异零点,
依此类推,内至少有一个零点。
记为使
其中依赖于
分段三次埃尔米特插值时,若节点为,设步长为,即
在小区间
       
16.求一个次数不高于4次的多项式P(x),使它满足
解:利用埃米尔特插值可得到次数不高于4的多项式
其中,A为待定常数
从而
17.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的淘题吧与值,并估计误差。
解:
则步长
在小区间上,分段线性插值函数为
   
各节点间中点处的中美在线的值为
时,
时,
时,
时,
时,
误差
的驻点为
18.求上分段线性插值函数,并估计误差。
解:
在区间上,
函数在小区间上分段线性插值函数为
误差为
19.求上分段埃尔米特插值,并估计误差。
解:
区间上,
函数在区间上的分段埃尔米特插值函数为
误差为
20.给定数据表如下:
Xj
0.25
0.30
0.39
0.45
0.53
Yj
0.5000
0.5477
0.6245
0.6708
0.7280
试求三次样条插值,并满足条件:
解:
由此得矩阵形式的方程组为
    2    1                    M0         
        2                M1         
            2              M2     
                  2        M3         
                    1    2      M4         
求解此方程组得
三次样条表达式为
代入得
由此得矩阵开工的方程组为
求解此方程组,得
三次样条表达式为
代入得
21.若是三次样条函数,证明:
,式中为插值节点,且,则
证明:
从而有
第三章 函数逼近与曲线拟合
1. ,给出上的伯恩斯坦多项式
解:
伯恩斯坦多项式为
其中
时,
时,
2. 时,求证
证明:
,则
       
3.证明函数线性无关
证明:
分别取,对上式两端在上作带权的内积,得
此方程组的系数矩阵为希尔伯特矩阵,对称正定非奇异,
只有零解a=0。
函数线性无关。
4。计算下列函数关于
m与n为正整数,
解:
,则
内单调递增
,则
m与n为正整数
时,
时,
内单调递减
时,
内单调递减。
时,
内单调递减。
5。证明
证明:
6。对,定义
问它们是否构成内积。
解:
(C为常数,且
这与当且仅当时,矛盾
不能构成上的内积。
,则
,则
,则
,且
即当且仅当时,.
故可以构成上的内积。
7。令,试证是在上带权的正交多项式,并求
解:
,则
,则,且,故
切比雪夫多项式在区间上带权正交,且
是在上带权的正交多项式。
8。对权函数,区间,试求首项系数为1的正交多项式
解:
,则区间上内积为
定义,则
其中
9。试证明由教材式给出的第二类切比雪夫多项式族上带权的正交多项式。
证明:
,可得
时,
时,
,故
得证。
10。证明切比雪夫多项式满足微分方程
证明:
切比雪夫多项式为
从而有
得证。
11。假设上连续,求的零次最佳一致逼近多项式?
解:
在闭区间上连续
存在,使
上的2个轮流为“正”、“负”的偏差点。
由切比雪夫定理知
P为的零次最佳一致逼近多项式。
12。选取常数,使达到极小,又问这个解是否唯一?
解:
上为奇函数
的最高次项系数为1,且为3次多项式。
与0的偏差最小。
从而有
13。求上的最佳一次逼近多项式,并估计误差。
解:
于是得的最佳一次逼近多项式为
蚕豆剥壳机
误差限为
14。求上的最佳一次逼近多项式。
解:
于是得的最佳一次逼近多项式为
15。求在区间上的三次最佳一致逼近多项式。
解:
,则
,则
为区间上的最佳三次逼近多项式应满足
时,多项式与零偏差最小,故
进而,的三次最佳一致逼近多项式为,则的三次最佳一致逼近多项式为
16。,在上求关于的最佳平方逼近多项式。
解:
,则
则法方程组为
解得
关于的最佳平方逼近多项式为
17。求函数在指定区间上对于的最佳逼近多项式:
解:
,则有
则法方程组为
从而解得
关于的最佳平方逼近多项式为
,则有
则法方程组为
从而解得
关于的最佳平方逼近多项式为
,则有
则法方程组为
从而解得
关于的最佳平方逼近多项式为
则有
则法方程组为
从而解得
关于最佳平方逼近多项式为
18。,在上按勒让德多项式展开求三次最佳平方逼近多项式。
解:
按勒让德多项式展开
从而的三次最佳平方逼近多项式为
19。观测物体的直线运动,得出以下数据:
时间t(s)
0
0.9
1.9
3.0
3.9
5.0
距离s(m)
0
10
30
50
80
110
求运动方程。
解:
被观测物体的运动距离与运动时间大体为线性函数关系,从而选择线性方程
则法方程组为
从而解得
故物体运动方程为
舰船科学技术
20。已知实验数据如下:
19
25
31
38
44
19.0
32.3
49.0
73.3
97.8
用最小二乘法求形如的经验公式,并计算均方误差。
解:
,则
则法方程组为
从而解得
均方误差为
21。在某佛堂反应中,由实验得分解物浓度与时间关系如下:
时间
0    5    10    15    20    25    30    35    40    45    50    55
浓度
0  1.27  2.16  2.86  3.44  3.87  4.15  4.37  4.51  4.58  4.62  4.64
用最小二乘法求

本文发布于:2024-09-23 01:37:45,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/502556.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:函数   误差   计算   插值   运动   矩阵   节点   分段
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议