RNA世界

RNA世界假说,英文为RNA World hypothesis,是科学依据多年的科学研究而提出的一条关于生命科学的理论。其内容为:生命进化的早期,没有蛋白质(酶),某些RNA可以催化RNA的复制——也就是说RNA是唯一的遗传物质,是生命的源头。
  RNA世界假说 - 概述
信使RNA
1981年度诺贝尔化学奖获得者吉尔伯特(W. Gilbert)提出了“RNA世界”的假说。它指的是
“在生命起源的某个时期,生命体仅由一种高分子化合物RNA组成。遗传信息的传递建立于RNA的复制,其复制机理与当今DNA复制机理相似,作为生物催化剂的、由基因编码的蛋白质还不存在”。
北京ons
RNA由于其五碳糖2′位是羟基, 化学活泼性远大于DNA,再加上其他原因,就特别容易发生突变,因此在携带遗传信息的能力方面,RNA不如DNA;RNA又由于组成没有蛋白质复杂,不可 能形成如蛋白质那么多样的结构,因此在功能分子的作用方面,RNA又不如蛋白质。但RNA是唯一的既能携带遗传信息又可以是功能分子的生物高分子化合物。因此,生命发生之初,很可能是在原始海洋深处的火山口边,高温、高压的条件下,在可作为催化剂的矿物质边富集了可能是雷电中合成的原始核苷酸。经过亿万年的进化,形成了具有自我复制能力的RNA.在人工条件下,这种进化的某些过程已被成功地模拟。原始的具有自我复制能力的RNA,再在以后的亿万年进化过程中,逐渐将其携带遗传信息的功能传给了DNA,将其功能分子的功能传给了蛋白质。核糖体是核酶的发现大大支持了RNA世界的假说。
  RNA世界假说 - 提出
c-myc RNA
超市布局设计
体外的化学反应王永庆的球童通常需要在高温高压下进行,体内的化学反应却能在常温常压下进行,而且效率非常高。这是由于体内有生物催化剂———酶的参与。长期以来,人们只知道酶是由蛋白质组成的。20世纪80年代初,美国科学家切赫发现RNA也可成为生物催化剂。最近,另一位美国科学家爱尔特曼也证明了这一点。切赫提出,原始的RNA分子就可以完成生命最主要的特征———繁殖过程。由于RNA催化剂的发现,切赫和爱尔特曼获得了1989年度的诺贝尔化学奖
同年,诺贝尔化学奖获得者吉尔伯特提出了“RNA世界”的假说。它指的是“在生命起源的某个时期,生命体仅由一种高分子化合物RNA组成。遗传信息 的传递建立于RNA的复制,其复制机理与当今DNA复制机理相似。此时,作为生物催化剂的由基因编码的蛋白质还不存在。”RNA是惟一的既能携带遗传信息 又可以是功能分子的生物高分子化合物。因此,生命发生之初,很可能是在原始海洋深 处的火山口边,在高温、高压的条件下,在可作为催化剂的矿物质周边富集了可能是由雷电中合成的原始核苷酸。亿万年的进化的过程中,形成了具有自我复制能力 的RNA。在人工条件下,这种进化的某些过程,已被成功地模拟。
原始的具有自我复制能力的RNA,在以后的亿万年进化过程中,逐渐将其携带遗传信息的功能 传给了DNA,将其功能分子的功能,传给了蛋白质。
  RNA世界假说 - 科学家观点
RNA结构
大多数科学家同意,在生命的萌芽阶段,RNA(核糖核酸,其结构和基本顺序是蛋白质的合成及遗传信息的决定因素)是决定生命的首个分子。根据“RNA世界”的假说, RNA是生
重庆夏泽良命初期最关键的分子,后来当DNA(脱氧核糖核酸,是细胞中带有基因信息的核酸)和蛋白质的功能远远超过最初RNA的作用时,它才退到了次要地位。
迪默说:“在我的领域中,很多最聪明最有才华的人都相信,“RNA世界” 不仅仅是假设,而是极有可能的事。”
RNA和DNA非常相似,每一个细胞里的RNA都发挥着诸多重要的作用,包括在DNA和蛋白质合成之间起到转移作用(转移rna),以及具有开启或闭某些基因的功能。
但是,“RNA世界”假说无法解释rna又是怎么产生的。像DNA一样,RNA也是由数千个被称为核苷酸的更小分子构成的,这些核苷酸之间以非常特 定的模式连接在一起。尽管有些科学家认为RNA可能自然产生于早期的地球上,而另一些科学家却认为发生这种事情的可能性犹如天方夜谭。
纽约大学的化学家罗伯特·夏皮罗说:“根据化学运作原理,要形成这样一种分子绝不可能。在这个领域里,这是不可能的事。要接受这个观点,除非你相信我们有难以置信的幸运。”
  RNA世界假说 - 相关研究
RNA世界假说
探秘“试管”中的进化 “人造生命”即将要诞生
成长中的生命:RNA复制分子组成的枝杈从DNA主干处水平发散开来。这样的RNA可以在试管中展示出进化的一些基本特征。然而,对于人造生命而言,它们还需要进化出崭新功能的能力。
杰勒德·F·乔伊斯(Gerald F. Joyce)承认,在看到这些实验结果的时候,他有一种冲动,想要暂停进一步研究,立即把这些结果发表出去。经过多年努力,他和他的学生特蕾西·林肯 (Tracey Lincoln)终于发现了一对虽然短小但功能强大的RNA序列,把它们和一堆结构更简单的RNA“原料”混在一起,前者的数量会不断倍增,几小时内就能 扩增至原来的10倍,而且只要有充足的原料和空间,这种扩增过程就不会停止。
但是乔伊斯对此并不完全满意。这位53岁的分子化学家是美国加利福尼亚州拉霍亚市斯克里普斯研究所(Scripps Research Institute)的教授兼所长,也是“RNA世界”(RNA world)假说的提出者兼拥护者之一。人们所知的生命主要基于DNA和类蛋白质,在绝大多数情况下,RNA不过是传递遗传信息的 信使。RNA世界假说则认为,现有生命是从一个更简单的前生命化学系统进化而来的,这个系统主要、甚至完全建立在RNA之上。当然,这个想法要说得 通,RNA本身就必须能够支撑进化。乔伊斯认为,或许他合成的RNA有助于证实这种可能性。因此他和林肯又多花了一年时间来研究这些分子,在它们的序列上 制造种种突变,并且建立起只有适者才能生存的竞争环境。
2009年1月,就在达尔文诞生200周年前一个月,他们在《科学》杂 志上公布了研究结果。
他们的微型试管系统确实表现出了达尔文进化的几乎所有本质特征。实验伊始,有24个RNA变体进行自我复制,其中一些变体在实验环境 中的复制速度比其他变体更快。所有RNA分子都共享同一个“原料”池,因此每一种分子都要和其他分子竞争。复制过程并不完美,因此新的变体很快就会出现, 甚至繁荣兴盛——乔伊斯把这些突变称为重组体(recombinant)。
“我们让这一过程持续进行了100个小时,”乔伊斯回忆道,“最后观察到复制分子的总数扩增了1023倍。最初那几十种复制分子很快就消失了,重组体开始接管整个。”不过,没有一种重组体进化出了它们的祖先所不具备的新功能。
缺少了这关键的一环,人工进化就无法完全重现真正的达尔文进化。“这还算不上生命,”乔伊斯强调说,“生命能够在进化中‘开创’出全新的功能,我们 还没有做到这一点。我们的目标是在实验室中制造生命,但是要实现它,我们就必须增加整个系统的复杂性,足以使它们进化出新的功能,而不只是对早已存在的旧 有功能进行优化。”
这一目标显然有可能实现,因为乔伊斯实验室中 的RNA复制分子相对简单:每个分子仅拥有两个可以变化的基因样片段(genelike section)。每一个这样的“基因”都是一段短小的R
NA原料。一个复制分子就是一个RNA酶,能够把两个“基因”集结并连接起来,产生一个新的微型 酶,也就是这个复制分子本体的“配体”。配体被释放后,也会集结两个不受束缚的“基因”,组装后产生一个与本体相同的克隆体。如果配体不忠实于本体,把本 来并不匹配的两个“基因”连接在一起,就会产生重组体。不过,这样的重组体确实无法创造出新的“基因”。如果能够营造出一个更复杂的系统,或者给每个复制 分子增加更多的“基因”来增加复杂性,创造新的基因或许有可能实现。
21世纪的RNA研究
美 国《科学》周刊分别于2001年、2002年初评出上一年度的世界十大科学突破,RNA研究均位居第二:生命可能始于RNA,而非DNA;RNA干扰在使 哺乳动物细胞的基因表达沉默和RNA在调控方面的很多新发现超出了科学家原先的想象。国际上,RNA研究正在受到人们前所未有的关注。
中、美、日、德、法、英六国 科学家和美国塞莱拉公司于2001年2月12日联合公布人类基因组图谱及初步分析结果。经初步分析,人类基因组共有3万至3.5万个基因,蛋白质合成有关 的基因只占整个基因组的2%。由此产生一些问题:第一,如果一个基因仅编码一个蛋白质,这么少的蛋白质如何维持人体那么复杂而多变的生命现象?科学家估计 人体中蛋白质数远大于现在发现的基因数。第二,如果一个基因可以表达出多种蛋白质,生物又是如何做到这一点的?第三,余下的不编码蛋白质的98%的基因组 有何功能?针对这些问题,RNA研究和RNA组学研究可以提供部分解答。
传统观念认为:三类最重要的 生物高分子化合物中,DNA携带遗传信息,蛋白质是生物功能分子,而RNA在这二者间起传递遗传信息的作用(即参与蛋白质的生物合成)。1980年代初, 美国科学家切赫(T. Cech)发现RNA也可成为生物催化剂,他命名这种RNA催化剂为核酶。在酶学领域,核酶的发现打破了多年来“酶的化学本质就是蛋白质”的传统观念。在 RNA领域,这一发现对传统观念的冲击更大,它使人们认识到RNA的生物功能远非“传递遗传信息”那么简单。此后,RNA领域的新发现不断出现。
基因组研究中的“垃圾”可能 是RNA基因。在基因组研究过程中,科学家发现了大量的不编码蛋白质的重复序列。它们一度被称为“垃圾”,而这种“垃圾”在越是高等的生物中含量却越多。 现在发现,这些“垃圾”中的一种,称为Alu家族的序列,被认为是反式可移动元件,可调控邻近基因的表达。基因组中,蛋白质合成有关的基因只占整个基因组 的2%,而编码非蛋白质的各种RNA基因占基因组的比例要大得多,可能要高一个数量级。由于发现mRNA的5′和3′非编码区也有调控功能,所以非编码 (蛋白质)的RNA基因数很可能大于蛋白质基因数。
RNA控制着蛋白质的生物合成
生物体内绝大多数的生物化学 反应均由酶(蛋白质)催化控制,因此,蛋白质的生物合成由谁催化,一直是人们关注的问题。核糖体是一由3~4种核糖体RNA(rRNA)与几十种蛋白质组 成的核糖核蛋白体,是蛋白质生物合成的场所。多少年来,人们在努力寻催化蛋白质生物合成的关键——转肽酶。直到2000年,核糖体大、小两个亚基均得到 了结晶,并获得了高分辨率的X射线衍射分析图谱。图谱分析表明,在肽键形成处2纳米的范围内,完全没有蛋白质的电子云存在。这说明肽键的形成不可能由蛋白 质催化,而只可能由rRNA催化。核糖体是核酶,这成了2000年的世界第二大科学成就之一。
生命起源:RNA世界
1981年度诺贝尔化学奖获 得者吉尔伯特(W. Gilbert)提出了“RNA世界”的假说。它指的是“在生命起源的某个时期,生命体仅由一种高分子化合物RNA组成。遗传信息的传递建立于RNA的复 制,其复制机理与当今DNA复制机理相似,作为生物催化剂的、由基因编码的蛋白质还不存在”。
RNA由于其五碳糖2′位是 羟基,化学活泼性远大于DNA,再加上其他原因,就特别容易发生突变,因此在携带遗传信息的能力方面,RNA不如DNA;RNA又由于组成没有蛋白质复 杂,不可能形成如蛋白质那么多样的结构,因此在功能分子的作用方面,RNA又不如蛋白质。但RNA是唯一的既能携带遗传信息又可以是功能分子的生物高分子 化合物。因此,生命发生之初,很可能是在原始海洋深处的火山口边,高温、高压的条件下,在可作为催化剂的矿物质边富集了可能是雷电中合成的原始核苷酸。经 过亿万年的进化,形成了具有自我复制能力的RNA。在人工条件下,这种进化的某些过程已被成功地模拟。原始的具有自我复制能力的RNA,再在以后的亿万年 进化过程中,逐渐将其携带遗传信息的功能传给了DNA,将其功能分子的功能传给了蛋白质。核糖体是核酶的发现大大支持了RNA世界的假说。
RNA的运动功能与调控功能
RNA虽然只由4种核苷酸组 成,但核苷酸的修饰增加了RNA结构的复杂性,为RNA功能多样性提供了物质基础。一些RNA如rRNA中,核苷酸的甲基化修饰和假尿嘧啶的生物合成,以 及rRNA的加工和细胞定位转运,均有一类核仁小分子RNA(snoRNA)参与。snoRNA参与的RNA修饰并不局限于rRNA一种,被修饰的RNA 种类不断被发现。
RNA具运动功能。中国旅美学者郭培宣发现:一种细菌病毒(噬菌体)装配依赖于RNA的运动功能。
RNA的调控功能是近年RNA研究的主要突破。
男性第23对染体是XY, 女性的第23对染体是XX。如果女性两条X染体都能正常表达的话,女性X染体编码基因的表达量将是男性的两倍。事实上男性与女性X染体编码蛋白的 表达量是一致的。其原因是哺乳类动物细胞中有一Xist基因,它不编码蛋白质,但可被转录成RNA,即Xist RNA。Xist RNA可通过一复杂的过程,与2条X染体中的一条结合,使其失活。
长征胜利的意义生命过程有时序性。如线虫生 长过程中有幼虫1期、幼虫2期、幼虫3/4期和成虫期四个不同的发育阶段。有一些不编码蛋白质的小RNA(称为反义RNA),如lin-4 RNA、let-7 RNA等,前者控制幼虫1期到幼虫2期的过渡,后者控制幼虫3/4期到成虫期的过渡。
在细胞周期调控中,一种meiRNA调控细胞从G1期进入S期。天然反义RNA对DNA复制、RNA转录、蛋白质生物合成的调控的事例已越来越多。
染体DNA的3′末端在端 粒酶的作用下,以端粒RNA(一种小分子RNA)为模板,合成一段DNA——端粒。细胞分裂时,DNA每复制一次,端粒DNA会短一点,直到端粒全部消 失。此时细胞再也不能分裂,走向死亡。成人正常细胞没有端粒酶和端粒RNA,而癌细胞含有端粒酶和端粒RNA。所以,我们也可说是端粒RNA,控制了细胞 的寿命和癌症的发生。
RNA携带与调制遗传信息
在一些病毒中,是RNA携带 遗传信息,而不是DNA携带遗传信息。属于RNA病毒的有烟草花叶病毒等侵染植物的病毒,鸡法氏囊病病毒等侵染动物的病毒。它们大多对农牧业生产有巨大的 危害。与艾滋病有关的HIV病毒,以及严重危害人民健康的丙肝病毒等也是RNA病毒。乙肝病毒虽是DNA病毒,但在其生命周期中,需要经过一全长RNA的 过程。
RNA调制遗传信息。如酵 母、植物、动物等真核生物(细菌等不是真核生物)的基因有很多是断裂基因。即基因的初始转录物(mRNA前体)中,一段段的蛋白质编码区被居间序列分开。 只有居间序列被去除后,也即成熟了的mRNA,才能成为蛋白质生物合成的模板。这过程称为RNA剪接。通过不同方式的RNA剪接,一种基因可在不同的发育 分化阶段、在不同的生理病理条件或不同的细胞、组织中合成不同的蛋白质。果蝇的性别决定就是通过不同的剪接途径完成的。RNA剪接在RNA水平上调控基因 的开放和关闭,增加或减少遗传信息,使一种基因合成出多种蛋白质。
很多生物的mRNA在成熟过 程中,均需经RNA编辑。一种RNA编辑是以另一RNA为模板来修饰mRNA前体的。通过编辑,可以给mRNA前体添加新的遗传信息。添加最多的实例中, 来自原始基因的遗传信息只占成熟mRNA的45%,其余55%的遗传信息来自其他RNA。现在生物体内发现有8种不同的RNA编辑方式。不同编辑方式,可 以在RNA水平上调控基因的开放和关闭,增加或减少遗传信息,使一种基因合成出多种蛋白质,从而调控生物的不同发育分化阶段等。
在蛋白质生物合成过程中,除 了常规的合成规律外,还发现有4种被称为“再编码”的方式。通常情况下,mRNA编码区中的每三个核苷酸组成一个密码子,每个密码子可按一定的密码表翻译 成一个氨基酸,或用作翻译的起始和停止信号。这种情况下,编码区的每个核苷酸只能也必须被阅读一次。但在再编码过程中,有的核苷酸被跳过而没有被阅读,有 的核苷酸却被阅读了两次,有的密码子被用来翻译特殊的氨基酸。因此,经过再编码,一个基因可合成出多种蛋白质或改变遗传信息量。
从上可知,遗传信息从DNA到蛋白质的过程中,RNA并非只是起简单的传递遗传信息作用,RNA通过各种剪接、编辑和再编码等方式,调控基因表达的方向,调制遗传信息。
RNA与疾病关系及RNA研究的应用
很多RNA的突变或异常可以 引起疾病,如红斑狼疮、重症肌无力、某些II型糖尿病、某些帕金森病、某些老年性痴呆等均由某些RNA异常引起。必须指出,RNA研究相对落后,然而随研 究的发展,将会发现更多的由RNA引起的疾病。一些RNA突变常造成蛋白质合成障碍或蛋白质合成错误率的增加,因此,一种RNA突变,常可因其发生部位如 组织细胞的不同,影响到不同的蛋白质,而引起不同的疾病。不同RNA的突变又可能因为发生在同一种细胞或组织中,而引起同一种疾病。也可因引起一系列蛋白 质合成的错误,而表现为综合征。这种特性增加了这类RNA疾病的研究难度。
RNA异常致病研究有助于了解疾病发生机理,为疾病到合适的途径。
RNA可应用于制药、基因工 程等。1990年代初,核酶的应用研究迅猛发展,现已有多种核酶药物进入II期临床研究。从1990年代初开始,由反义RNA发展而来的反义寡脱氧核苷酸 类药物(包括三链形成寡脱氧核苷酸)同样发展迅猛。1998年第一种反义核酸药物在美国获得FDA批准正式进入临床应用。现进入各期临床研究的反义核酸药 物有数十种。近年来,通过体外筛选技术,发展核酸类抗体药物的工作也很热门。因为它具有蛋白质抗体的优点,而且没有蛋白质类抗体的人源化问题和在人源化途 径中滴度下降的问题。RNA干扰的应用研究也迅速展开,已有多个这方面的专利出现。RNA还有RNA水平的扩增、tRNA介导的基因工程等应用。
RNA组学的提出
基因组的研究最终可以提供给 人们全套的DNA序列,从中可以检出所有的蛋白质基因。由于每个细胞都有全套的遗传信息,但在不同的生长发育阶段、不同的组织或不同的生理病理情况下,表 达的蛋白质谱是不一样的。因此1995年提出了蛋白质组学以研究蛋白质在不同时空情况下的表达及其生物学意义。由于DNA与蛋白质的不完全对应 性,1997年又有人提出了转录组(transcriptome)计划,主要研究蛋白质基因转录的时空关系及其生物学意义。但是如上所述,RNA的生物功 能远远超出了作为遗传信息传递中介的mRNA的功能范围,所以研究所有上述各种RNA在内的所有RNA的时空表达情况及其生物学意义,将在全面破解生命奥 秘过程中发挥重要作用。
中外科学家都注意到了以此为 研究对象的RNA组问题。我国科学家在1998年12月第109次香山科学会议、2000年1月第11次东方科技论坛和2000年3月国家重点基础研究计 划(973项目)评审会上,提到了“开展功能RNA组研究”的问题。国外在2000年底提出了RNA组学(RNomics)。RNA组学研究将会在探索生 命奥秘中和促进生物技术产业中,作出巨大贡献。如果说基因组学正全力构筑生命科学基石的话,那么RNA组学和蛋白质组学、生物信息学等都是它不可缺少的同 盟军。

本文发布于:2024-09-22 09:28:08,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/483071.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:蛋白质   基因   功能   合成   生物
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议