(完整版)Zintl相的组成和结构

Zintl相的组成和结构
Components and Structures of Zintl Phase
XXXX
摘要Zintl相化合物是由碱金属或者碱土金属和p区的金属或者准金属、小能带半导体组成,由于阴离子具有极其复杂的结构,因而广受化学家关注。对于其结构的预测由初期的Zintl-Klemm理论发展为现今的Wade规则,但是在以13族为代表的Zintl相化合物中,仍有许多特例,这主要是由骨架的压缩或拉伸和其他富电子金属的填充导致。
关键词Zintl相;阴离子;Wade规则; 特例
Abstract: Zintl phases contain an alkali or alkaline-earth metal and a p-element(or elements) that is a metal, semimetal, or small-gap semiconductor, which have widely gained many chemists’ attention because of the extreme complex structures of anions. Wade’s rule has been used in predicting their structures instead of original Zintl-Klemm theory, but there are numerous exceptions, especially in 13 group, which is mainly owing to
the compression or stretch along axis or the addition of other metals capable to supply electrons.   
Key Words: Zintl phase, anions, Wade’s rule, exceptions
 
早期的化学家们常常认为完全的电子转移必定发生在金属和非金属之间,但是实验表明,元素往往不是那么简单。[1]1891年M. Jonanis首先观察到钠和铅或和锑在液氨中分别形成绿和深红的溶液,后来被鉴定含有[Pb9]4-和[Sb7]3-,这是Zintl阴离子,即金属簇阴离子首次被发现。1932年Eduard Zintl对这些化合物进行了深入研究,并尝试对其结构进行解释,后来经过Klemm完善,最终形成了经典的Zintl-Klemm理论。1971年Wade规则诞生,其原本主要用于对结构进行预测,后来被引入Zintl相化合物,在其中大放异彩。对于Zintl相化合物的研究,主要集中于丰富而又复杂的化学结构,这大大促进了结构理论的发展。最近,随着研究的深入,Zintl相化合物的各种潜在应用不断被挖掘出来,如其热电性质、高温超导、储氢、磁阻等,因而广受关注。
一、Zintl相组成
Zintl相化合物归属于金属间化合物[2],由于其结构和性质的复杂,故人们常常使用其共有的性质和特点来作为其定义[3]
1) 包含碱金属或者碱土金属和p区的金属、准金属或者小能带的半导体。
2) 满足八电子规则或者有额外的电子或者空穴。
3) 线型化合物。
4) 半导体或者不良导体。
5) 反磁性或者随温度变化不显著的弱顺磁性。
6) 易碎。
从定义可知,Zintl相化合物包含电负性低的s区活泼金属和电负性高的p区金属、准金属或者小能带半导体,位于Ketelaar键三角金属和离子化合物中间(图1[2]),因而性质上和两
青岛黄台路
者具有一定的相似之处。由于发生完全的电子转移,故电子从电负性低的金属流向电负性高的金属。为满足(8-N)电子规则,负电荷的p区金属之间通过形成共价键构成了结构复杂的Zintl相阴离子。后来,随着研究的深入,发现一些Zintl相化合物具有额外的电子,这些电子离域在阳离子轨道上或者阴离子的反键轨道上,因而具有一定的金属导电性。
图1 Ketelaar键三角中Zintl相化合物
图2 KGe晶胞
二、Zintl结构理论
由于Zintl相阴离子结构复杂,而阳离子均为碱金属或者碱土金属的简单离子,且均匀分布在阴离子之间,故对于Zintl相化合物结构的研究主要集中在前者。早期的Zintl-Klemm理论
本质上就是所谓的8电子规则,即阴离子的每一个元素通过成键达到8电子稳定结构。典型的例子是KGe晶胞[2],如图2所示,其化学式实际上为K4[Ge4],阴离子为Ge44-,每个Ge-为达到8电子结构,需要3个电子,需成3根共价键,由等电子原理可知,可类比P4,故为正四面体结构。
随着研究深入,人们发现结构更加复杂的Zintl阴离子。若用8电子规则,这些阴离子则形成了大多中心,比如3中心2电子键,在结构预测上困难重重然而巧合的是具有与之相似结构,因而原本1971年诞生用于预测结构的Wade规则引进,大大推动了结构理论的发展。
根据Wade规则阴离子的每一个端点原子具有一对未成键孤对电子,其余电子用于构成阴离子骨架除此之外Wade规则骨架分为3种机械振动与机械波,分别为封闭式、巢式蛛网式,前者三角多面体结构(表1),后两者是分别将封闭式一个、两个端点移去形成Zintl相阴离子的组成元素多为13、14和15族金属或者准金属,它们构成不同骨架结构的电子通式和所带电荷见表2。
然而Wade规则原本应用孤立的阴离子簇结构,故在Zintl相阴离子网状结构中需要得到改进,即将不用于骨架端位孤对电子用于连接每一个阴离子簇。由于每一个孤立簇间的连接只需要成一根共价键,既需要2个电子,故多余的电子可用于骨架成键,从而减少了化学式的电荷数目。
顶点数
多面体
4
正四面体
5
三角双锥
6
正八面体
7
五角双锥
8
正十二面体
9
三帽三棱柱
10
二帽四方反棱柱
11
十八面体
12
正二十面体
表1 封闭式结构中顶点数和几何结构的对应关系
骨架结构
封闭式
巢式
蛛网式
电子通式
2n+2
2n+4
2n+6
所带电荷
13族
(n+2)-
(n+4)-
(n+6)-
14族
2-
4-
6-
15族
(n-2)+
(n-4)+
(n-6)+
表2 14、论我国经济的三元结构15和16族金属或者准金属构成三种骨架电子通式所带电荷
三、经典13、14和15族Zintl阴离子结构
2可知,13族Zintl相孤立阴离子至少含有(n+2)负电荷,基团所带负电荷,排斥力较大,而不稳定,可推测13族Zintl相化合物稀少,然而,出乎意料的是,13族Zintl相化合物种类繁多,其主要原因是采取非经典结构,具体内容会在下一节介绍。除此之外网状结构由于可以减少外来电子的使用,故存在成为可能[3]其中一个好的例子是KGa3(图3),包1个封闭式的三角十二面体和1个四配位的Ga-离子。前者所需电子数
闭式 2×8+2=18,桥连 8,原有24个电子,故为[Ga8]2-, 再加上Ga-和3个K+化学式为K3[Ga9]
图3  KGa3
图4 A:单帽四方反棱柱 B:三帽三棱柱
Wade规则下的14族的Zintl相化合物所带电荷较少,故其经典结构较为丰富。比如图2所示的KGe,可用Wade规则推出。由2可知,[Ge4]4-属于巢式结构,故可由封闭式三角双锥2013年中央经济工作会议全文5个顶点)除去一个顶点而成,故为正四面体。除此之外还有阴离子采取巢式单帽
四方反棱柱Cs4[Ge9][4]但是对于K4[Pb9]阳离子阴离子大小不匹配,故阴离子除了经典的单帽四方反棱柱还存在封闭式三帽三棱柱图4[Pb9]4-形成三帽三棱柱显然不符合Wade规则,其原因在于阴离子沿着三条轴向拉伸,使得原本的反键空轨道变为成键轨道填充电子。
对于15族Zintl相化合物原子数较多时,其离子簇带正电荷[5]虽然有[Bi5李先念的女婿]3+存在,但是由于其不符合Zintl相的定义,故不考虑。常见经典结构为Cs3[Bi2],其实际为3Cs+ + Bi22- + e-,包含Bi-Bi双键一个离域的单电子因而具有导电性。从键长数据可以看出正常的Bi-Bi双键2.838Å,此双键键长为2.976 Å,这是因为单电子离域在反键轨道上使得键长增长。
四、非经典Zintl阴离子结构
除了K4[Pb9]中为增加负电荷而拉长的三帽三棱柱外,主要非经典结构是为了减少阴离子上过多的负电荷,故其在13族Zintl相中极为常见。2可知,13Zintl相阴离子所带负电荷非常多,排斥力极大,导致结构不稳定,因而发生畸变而形成稳定的化合物。常见
减少负电荷的方法有两种,一是沿轴向压缩,使得成键轨道变为反键轨道,故而失去电子[6]例如K8In11。由图5可知其为五帽三棱柱结构韩启德简历可以看为由经典封闭式三帽三棱柱,即In911-在上下添上两个不带来成键轨道反而各提供一个骨架电子的In原子,故所需构成骨架的外来电子减少,其化学式为In119-之后沿着三个轴向压缩其骨架,使得一个成键轨道变为反键轨道(图6),因而失去电子,变In117-。比较分子式K8In11可知其中一个钾离子提供的电子没有在阴离子中显示其实类似Cs3[Bi2]多余的电子离域在骨架和阳离子的轨道上,其金属导电性可以验证
第二种减少阴离子电荷的方法是添加富电子原子来弥补骨架电子的缺失[7]比如K8In10ZnIn形成二帽四方反棱柱结构,Zn位于中心(图7)。为了使每一个In到Zn的距离相等,故需压缩阴离子结构,并同时减少了骨架所需电子除此之外,Zn作为12族元素,易于提供两电子参与骨架成键,故其阴离子为[In10Zn]8-

本文发布于:2024-09-21 04:32:54,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/481622.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:电子   结构   阴离子
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议