TEM在研究中的应用(可编辑)

文学技巧
TEM在研究中的应用
助产学
TEM 在研究中的应用一.前言:透射电子显微学(Transmission electron microscopy,TEM)内容非常丰富,涉及光学、电磁学、固体物理、晶体学、电子学、真空技术、计算物理学、数据分析等多种学科和技术领域,是一门理论与实验高度结合的学科。本文将就TEM 在自己研究中的应用做一个系统的介绍说明。课题名称:Al- Zr - Er alloy. 二.透射电子显微术的优缺点在开始说TEM的诸多用途之前,先说说它的优点和缺点。只有了解了这些才能真正做到扬长避短,物尽其用。TEM的优点有以下几个:1.信息采集范围小。这是TEM最大的一个优点。TEM的实验区域可以极其微小,可以直接在极微小区域内取得数据。现在最先进的TEM已经可以对小于0.1纳米的区域进行拍照和分析。在各种科学仪器中,只有扫描探针显微镜能达到这样的分析尺度。但是二者不能相互替代,扫描探针显微镜研究范围只局限于表面,TEM得到的信息来自样品的三维结构。但是这种微小的分析尺度有时候也会带来局限性,下面会谈到。2.工作模式多样。透射电子显微镜(Transmission electron microscope,TEM)不仅仅具有通常显微镜的放大作用。它还可以作为一台电子衍射仪提供样品的结构信息。配合各种信号探测器,它又能对样品做化学成分或者磁、电性能的分析。并且这些功能之间的转换非常方便,甚至可以同时进行TEM的两种典型工作模式:a)图像模式(明场)和b)衍射模式(选区)TEM物镜附近光路TEM的缺点主要在以下几个方面:1.破坏性样品制备。TEM需要很薄的样品使电子束能够穿过。对于大多数材料,要求在微米以下。这显然远远低于通常块体材料的厚度,所以需要认为地把样品减薄。这实际上是个对材
料的破坏过程。这个过程有可能使样品发生变化,以致最终看到的并非材料原先的性质,而是制样过程引入的假象。2.电子束轰击。TEM中使用高能电子束照射样品,
电子能量在105~106eV量级,并且束流密度很高。换句话说就是在实验过程中大量高能量电子被持续地倾泻到样品上。大部分电子会毫无遮挡地穿过样品,其余的电子会和样品里的原子发生碰撞,并且可能在碰撞时向原子传递能量。样品吸收能量后可能出现多种变化,比如温度升高,原子电离,原子移动,等等。而这些变化又可能引发更多相关变化,比如相变,缺陷移动,结构崩塌,原子迁移,等等。某些情况下,研究人员会有意识地利用轰击作用研究材料的变化情况,但是多数情况下这种作用是不利的。3.真空环境。TEM实验需要在真空环境里进行,至少目前还是这样。这种环境可能会对材料的性质或结构有影响,尤其是做表面研究的时候。有时候需要实验环境尽量跟真实环境接近,有时候又需要真空度尽量高。总之,TEM的内部环境跟理想条件有差距,必要时需要考虑这种差距的影响。4.低采样率。这是TEM的一个大缺点。由于TEM的观察范围很小,而且样品很薄,实验测试到的样品区域只占整体材料的极小一部分。这个微小的区域未必能真实反映材料的性质。因此,基于TEM实验数据做结论的时候一定要慎重,必须仔细考虑所得实验结果是否具有普遍意义。三.透射电子显微镜的三种常见工作模式在研究中的应用TEM有三种基本的工作模式,作用各不相同。1.图像模式。在这种模式下,TEM是一台放大镜,可以对样品的形貌进行观察,比如晶粒尺寸,晶体缺陷,相分布,等等。-Zr-Er合金在TEM下的明场像。右图为其衍射图。Fig1中大的是豆瓣状的Al- Zr - Er 析
出相,其中在铝基体中弥散分布着的是成分Al 3 (Zr x Er 1-x )的析出相,文献中报道的是一种核壳结构。-Zr-Er合金在TEM下的暗场像。对应的带轴是0 1 3 带轴。2.衍射模式。在这种模式下,TEM是一台电子衍射仪,我们看到的是电子被样品散射后形成的衍射强度分布。大家对于XRD可能比较熟悉,而电子衍射相对陌生一些。其实,电子衍射在原理上跟XRD非常类似,只是实现的方式不同。电子衍射的强度在空间是三维分布。在TEM中,我们通常观察到的是其中的一个截面,就是通常所说的电子衍射图,或者叫电子衍射谱。截面的特征跟观察的方向密切相关。衍射模式对
于析出相的研究具有重要的意义,如下图所示Fig.2.如图所示是Al- Zr - Er 合金的衍射图。其中箭头所示的为Al基体中的析出相多余衍射斑点。3.扫描透射模式。扫描透射(STEM)其实是一种独立的显微成像技术,有专门的扫描透射显微镜。但是装备了必要的附件之后,这种技术可以在TEM上实现,并且有越来越流行的趋势,所以我们在此把它也作为TEM的一种工作模式列出来。在这种模式下,电子束在样品上扫动,样品的下方形成电子衍射。用一个环形的或者圆形的探头接收部分电子衍射并转化为电信号在显示器上形成图像。图像上的一个点对应电子束扫过的一个位置。这种成像方法其实和扫描电镜是相同的,只不过收集的是从样品透射过来的电子,扫描透射的名字也是这么来的。STEM高分辨暗场像四.透射电子显微镜样品制备技术TEM的样品必须足够薄,由此就发展出了多种针对不同类型材料的样品制备技术。根据不同的材料特性,主要有以下几类制样方法。1.粉末分散。这种方法适用于粉末材料。这种方法非常简单,只要把材料在合适的溶剂里分散,然后转移到带有支撑膜
互联网情报的铜网上就可以了。脆性的块体材料在研钵里粉碎后,也可以用这种方法制样。2.离子减薄。把块体材料研磨到很薄,然后放在离子减薄机内用能量较高的离子束轰击,直到穿孔。孔的边缘会有一些很薄的区域适合电镜观察。3.电化学抛光。把材料研磨到比较薄,放在合适的电解液里,加上一定的电压,过一段时间后,材料上就会有一部分被腐蚀掉,出现适合观察的薄区。4.超薄切片。把材料先用树酯包埋,固化后用特制刀具切出很薄的碎片。把碎片漂浮在合适的液体表面,然后再转移到铜网上就可以了。5.机械研磨。这通常是作为其它制样方法的前期步骤,但是有时候也可以作为一种独立的方法使用。比如使用抛光机把样品磨成楔形,边缘部位就会出现很薄的区域。6.复形和萃取。这是比较古老的方法。复形就是复制形貌,有不同的操作方法,最终都是用碳膜把材料表面形态复制下来,然后喷镀金属增加衬度。萃取是把碳膜附着在材料表面,把材料腐蚀掉后,某些抗腐蚀的颗粒就粘附在膜上成为样品。7.聚焦离子束刻蚀(FIB)。这是近年来新兴的一种制样
方法。在特殊的扫描电镜里,用聚焦的镓离子束对沿一定的路线对样品轰击,最后挖成一个薄片。这种方法最大的优点是位置精确,对于需要在特定位置进行观察的样品尤其适用。这里只是简要提到了几种主要的TEM制样方法,未必能应对所有材料的制备。每种方法都有其优点和缺点,应该根据需要灵活选用。五.透射电子显微镜的常见附属设备TEM除了前面提到的成像和电子衍射的基本功能外,还可以通过增加附件把功能进一步扩充。这些丰富的扩展功能与TEM的微区观察能力相结合,在材料科学研究中具有不可替代的优势。一台配备了EDS,EELS 和STEM的TEM 2010F .(北京工业大学固
体微结构与性能研究所) 1.能谱(EDX)。高能电子束照射到材料上后,高能电子可以使原子激发。激发态的原子不稳定,倾向于回到低能状态,这个过程中会把多余的能量释放出来。释放能量的一种方式是特征X射线。这种X射线的能量等于原子能级的能量差,由于不同的原子能级结构不同,所以这种特征X射线就成了原子的一种标志。EDX可以探测到这些X射线并且按照能量排列成谱图。根据谱上峰的位置和强度就可以确定材料里所含元素的种类和含量。2.能量损失谱(EELS)。高能电子穿过样品的时候,部分电子跟样品发生碰撞并且损失能量。损失能量的多少跟样品中参与碰撞的粒子的种类,碰撞类型,化学键合以及样品厚度都有关系。EELS可以收集从样品透射过来的电子并且对它们的能量损失情况做分析。从原理上来说,由EELS可以得到样品厚度,成分,价态,电子密度,能带,近邻原子分布等等丰富的信息。由于目前还没有操作EELS,因此没有数据,但是将利用EELS统计样品厚度,从而计算出析出相的体积分数等相关数据。EELS将对本课题研究起至关重要的作用。3.透射扫描(STEM)。严格地说,STEM是一种独立的显微成像技术,但是现在越来越多的TEM可以实现这种功能,所以我们在此把它作为一种附属设备列出来(某些电镜已经把这一功能整合到TEM主体里,从外观上看不到这个设备)。最初发展STEM是为了提高成像的分辨率,现在STEM在分辨率方面的优势已经不是非常,但是它的高角暗场(HAADF)成像模式相比于TEM却有着非常独特的优势。
ZHOULIANHAADF的图像对比度跟原子序数有一定关系,并且受样品厚度影响不明显,可以由图像对比度直观地
得到和成分相关的信息。Fig.3. Al3(ZrxEr1-x) 析出相HRSTEM像六.透射电子显微镜常见技术简介基于TEM灵活多变的工作方式,科学家们发展出很多特点鲜明的技术来解决不同的问题。在材料科学研究中常用的和TEM相关的技术有如下几种:1.选区电子衍射(SAD或SAED)。前面对电子衍射已经有所介绍了。SAD是用一个小光阑(就是一个带孔的金属片)在样品上选择一个特定的区域,然后做衍射,电子衍射的信息就跟这个区域相对应了。典型选区电子衍射图及其光路2.明场(BF)像和暗场(DF)像。由前面的图解可以看出,电子衍射位于样品和像之间,参与成像的光线都会从衍射平面上经过。如果只让一部分光线通过衍射平面,那么我们就只能得到一个“不完整”的像。这种不完整的像非常有用。当材料结构比较复杂的时候,通过选取不同的衍射信号,我们可以很容易地把不同的结构在图像上区分开,从而了解它们的空间分布。无论是晶体还是非晶体,电子衍射在空间上都可以看作两部分,即中心直射斑和其余的部分。选取直射斑形成的像叫作明场像,选取非直射斑成的像叫作暗场像。明场像和暗场像是研究材料相分布和缺陷结构的有力工具。暗场像成像原理3.高分辨像(HREM)。顾名思义,这种技术得到的图像分辨率特别高。最新的技术已经可以得到分辨率低于1埃的图像细节。这样的分辨率已经小于很多材料里面原子之间的距离,因此可以利用这种技术研究材料的原子排列情况。尤其是在缺陷,界面,低维结构以及搀杂材料的研究中,这种技术大量应用。TEM和STEM 都可以得到HREM图像,因为其成像原理和利用的信号不同,它们在应用上有各自的特点和优势。Fig.4.比较不同时效状态下Al- Zr - Er 合金中析出相状态的HRTEM图。100攀钢机制公司
后退哥

本文发布于:2024-09-23 05:17:25,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/478055.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:样品   材料   研究   能量
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议