核磁共振测井原理

                      核磁共振测井原理
勘技09-1      贵州师范大学学报张楠 0901********
中医英语
摘要:现今核磁共振测井在测井中已经起到越来越重要的作用了。它就是利用核磁共振现象来测地层中自由流体的含量、底层孔隙度、渗透率、含油饱和度,以及划分储集层。基本原理是在垂直于地磁场He的方向上加一个很强的极化磁场Hp,使地层中的原子核被极化。
关键词:核磁共振  核磁共振成像  核物理  极化磁场  地磁场
AbstractNuclear magnet reflection logging(NMRL) have already play more and more important role in logging,nowdays.NMRL use NMR phenomenon to take measure to liberal fluid content of stratumhole limitation of stratumpenetration rate食品工业科技include petroleum saturation rate and separate reservation stratumIts base principle that at the vertical stratum magnetic flied He aspect plus a strong polarization magnetic flied Hp ,which to make atom polarization in the stratum
Key words: nuclear magnet reflection  nuclear magnet reflection imagine  nuclear physics p
olarization magnetic flied  stratum magnetic flied
一、   快速发展的核磁共振测井技术
      1945年,Bloch 和Purcell发现了核磁共振(NMR)现象。从那时起,NMR作为一种有活力的谱分析技术被广泛应用于分析化学、物理化学、生物化学,进而扩展到生命科学、诊断医学及实验油层物理等领域。如今,NMR已成为这些领域的重要分析和测试手段。
40年代末,Varian公司证实了地磁场中的核自由运动,50年代,Varian Schlumberger-Doll,Chevron三个公司开展了核磁共振测井可行性研究。60年代初开发出实验仪器样机,它基于Chevron研究中心提出的概念,仪器使用一些大线圈和强电流,在志层中产生一个静磁场,极化水和油气中的氢核。迅速断开静磁场后,被极化的氢核将在弱而均匀的地磁场中进动。这种核进动在用于产生静磁场的相同线圈中产生一种按指数衰减的信号。使用该信号可计算自由流体指数FFI,它代表包含各种可动流体的孔隙度。这些早期仪器有一些严重的技术缺陷首先,共振信号的灵敏区包括了所有的井眼流体,这迫使作业人员使用专门的加顺磁物质的泥浆和作业程序,以消除大井眼背景信号,这是一促成本昂贵且耗时冗长的处理,作业复杂而麻烦,测井速度慢石油公司难以接受。其次,用强的极化电流
持续20ms的长时间,减小了仪器对快衰减孔隙度成分的灵敏度,而只能检测具有长弛豫衰减时间的自由流体,由于固液界面效应对弛豫影响及岩石孔隙中油与水的弛豫时间差异不大,使得孔隙度和饱和度都很难求准。此外,这些仪器为翻转被极化的自旋氢核需消耗大量功率,不能和其它测井仪器组合。但这些难题没有使核磁共振测井研究中止。70年代末至80年代初,美国Los Alamos国家实验室Jasper Jackson 博士提出“INSDE-OUT”磁场技术。在相同时期,磁共振成象(MRI)概念也得到很大发展。1983年,Melvin Miller博士在美国创办了NU-MAR公司,他们综合了“INSIDE-OUT”概念和MAR技术同时,斯伦贝谢公司几十年来,一直在努力发展核磁共振测井技术。总体来看,十几年来核磁共振测井技术的快速发展表现在以下几个方面:
第一,根据“INSIDE-OUT”思想,不用地磁场,而是在井中人工放置一个高强度磁体,所推出的核磁共振率统核心部分是由稳恒磁体发射射频(RF)脉冲并采集自旋回波信号的RF线圈组成。该技术使稳恒场B0与RF场B1相互垂直,磁体的轴沿井筒主向,其磁场方向垂直地地层。B0场与B1场的特点是:在空间任意处它们均相互正交;它们的等场强线为同心圆柱面;场强在径向上均与距离的平方成反比。B0与B1的正交性是获取最大信号的关鍵。核磁共振空间是由RF脉冲频率确定的,可以通过选频选定探测空间。因此使用各种新
型核磁共振测井仪不象过去那样要进行繁重的泥浆处理作业。
第二,选用了由Carr,Purcell,Meiboon和Gill改进的脉冲回波序列技术,即CPMG序列脉冲回波技术,它的思想是对可逆转散相效应引起的快衰减进行补偿。设计RF线圈和稳恒磁场的独特组合可以实现自旋回波序列。选用这种技术的优点是:(1)利用自旋转回波方法可以获得较高的信噪比,这对任何测量都是一个基本指标,对井下连续测量更重要。(2)自旋回波技术可放松对磁场极高均匀性的需求。这对MIR(核磁共振成象)和MRL(磁共振测井)都非常重要。MIR使用梯度场来定位信号怪生区域。MRL特别要求其测量对象置在探头之外,因此均匀度很高的磁场是不可能的。(3)自旋回波序列可视具体情况需要进行修改,有灵活可变化的特点,适于多种多样的井眼和地质情况。近二、三十年已发展出几百种回波序列。由于计算机和电子技术的不断发展,使僺作者控制RF脉冲的强度、相位、宽度和发射时间的能力不断增强,也使核磁共振测井可选用的自旋回波序列更丰富多样。
第三、开展了大量实验研究,为NMR测井应用提供了科学基础。实验研究是进场应用的基础,多年来国内外石油公司、研究单位、测井公司、大学对多孔岩石NMR测井应用的主要
原理如孔隙度表面弛豫特性、体积流体弛豫特性、流体扩散弛豫、岩石中顺磁物质对弛豫影响,岩石孔隙度、渗透率、孔隙结构、润湿性与弛豫特性的关系,束缚流体、可动流体弛豫特性,油、水、气弛豫特性差别,粘度、矿化度对弛豫时间影响等等方面开展了大量实验研究,同时对实验资料分析处理研究所作的假设与近似作了充分阐述,为应用核磁共振测井资料求岩石物理参数,识别油、气、水,预测产能,选择测井参数等建立了应用基础,大大推进发该技在油气勘探、开发中的应用。
第四、对测量参数的选择做了很多分析研究工作。每次测井中有三个参数能够控制,它们是回波间隔、等待时间和采集的回波总数。因而NMR测量是一种动态结果,取决于如何测量它。改变等待时间能影响总的极化效应。改变回波间隔能影响观测流体扩散效应的能力增加回波总数能获得更精确的有关长弛豫时间分量的信息。改变测井参数能影响NMR测井解释主要原理的运用,例如缩短回波间隔将获得更多的与粘土相关的快弛豫信号成分的信息;加长回波间隔会增大流体梯度扩散效应,用以区分油、气;而缩短等待时间,通过不完全极化成分的长弛豫分量,利于区分油、气等。
黄天道第五、对测量信号的处理技术不断进行改进。如:对T2回波信号用多指数模型拟合成弛豫
时间分布谱,通过截止值区分束缚流体和可动流体体积;用谱差分法和谱位移法识别孔隙中流体类型,及充分采集早期回波求粘土束缚水体积等软件。
    现在,NMR测井在应用方面已有重要进展。首先它能告诉地层中含有多少流体,是自曲流体还是束缚流体,在有利情况下,能过考虑各种影响因素后能决定流体类型,即区分油、气、水。其次,它能提供不同的孔隙度成分,依据横向弛豫时间T2韩文德的分布,以截止值方法区分自由流体、毛管束缚水、粘土束缚水分别占据的孔隙空间。90年代初期的仪器能测量的最短T2下限值是3-5ms,最新仪器可能测量的T2衰减成分下限达0.1-0.5ms。因此可以求自由流体孔隙度、有效孔隙度,正向求总孔隙度TCMR方面迈进。第三,它能提供常规孔隙度仪器不能获得的关于地层孔隙度尺寸分布和孔隙结构的信息。更好地描述流体的可动性。第四,新的、测速较快、成本较低的NCMR仪和常规仪器结合,可改善关鍵地层特性如束缚水包和度和渗透率的确定,从而提高储层产能预测能力。同时,可提供更准确的定量化的泥质砂岩气层和稠油层评价。
目前,能提供NMR测井商业服务的主要有两种仪器。一种是NUMAR公司的MRIL仪,另一种是斯伦贝谢公司的CMR。MRIL仪为获得强信号使用条形磁铁和纵向接收线圈的组合,
以产生与井眼同轴、离井几英寸的长(2ft)薄圆柱环状探测灵敏区。近年来该型仪器增加一种多路定时方式,提高快衰减测量的信噪比,即将回波间隔为1.2ms由400个回波组成的标准脉冲回波组成的标准脉冲回波序列和标准半回波间隔有8-16个回波的短回波予序列快速脉冲结合,这一脉序列重复50次噪音减至1/7。目前该仪器测量的T2能短至0.5ms。另一种是斯伦贝谢公司的CMR仪器。该仪器使用一对条形磁铁,在其中间夹定向天线、聚焦,该仪器的垂向分辨率为6in。探测灵敏区为进入地层0.5-1.25in的体积域。它对薄泥质砂岩快速孔隙度变化比较敏感。近年CMR硬件已得到改进,信号处理软件已升级,每个回泚的信噪比已改进50%,回波采样率增加40%,回波间隔从0.32ms缩短为0.2ms,优化了信号处理软件使其对短T2衰减有最大灵敏度。因此,新的脉冲回波CMR-200仪器测量的最短地层T2衰减时间,用连续测井方式时达到0.3ms,点测方式达0.1ms。
两个公司虽然都采用低场射频脉冲方式,但所用频率不同。
1. 磁场的选择
核磁共振测井的初始阶段,人们利用地磁场做为稳定的均匀磁场,但磁场的均匀程度和强度有时并不能满足核磁共振测井的要求,所以要设计更适合井下测量的磁场。经过人们的
努力,已经提出了多种磁场设计方案,主要有均匀场和梯度场的选取。
斯伦贝谢公司的可组合核磁共振测井仪CMR是90年代发展起来的,其设计思想源于上述方案,并加以发展。仪器尺寸小,可组合性高,永久磁铁和天线都固定在帖井壁的滑板上,磁铁平行分布在天线两侧,在附加装置的作用下,它们发出的磁力线伸向地层,在离井壁约1in处形成一个均匀的磁场区域。调节天线发出的射频场频率可以选择磁场均匀区为共振区域。仪器贴井壁测量,因此消除了井眼对测量的干扰,既提高了数据的质量,又降低了测井的成本,同时,使仪器有较高的分辨率。但是应该看到仪器的径向探测深度还是比较浅,并且选择的探测区域的体积很小,信号拫弱,信噪比有时仍不理想。
Numar公司的MRIL技术的核心部分是两块高强度的永久磁铁,磁铁呈偶极方式相向沿井轴方向排列,永久磁铁产生的稳定磁场在径向上随着距井轴距离的加大而逐渐减弱,这是一个沿径向分布的梯度场。通过调节射频场的频率可以选择共振的区域。存在的问题是,如果井眼质量不好如扩孔严重,测量环节带中可能会有泥浆存在,结果仍会受到泥浆的干扰,另外,由于选择的区域是一个小的环形区域,有用信号的强度也不会太高。
2. 核磁共振测井的测量方法
核磁弛豫的测量方法有多种,在核磁共振测井中主要采用了预极化方式、自旋回波方式等,前者在井下测量简便易行,后者可以消除由于扩散而对测量结果带来的误差,使结果更为准确,并且提 高了信噪比。
1) 预极化方式
在稳定场的垂直方向上加一较强的极化场,经过足够长极化时间,原来沿稳定场 建立的平衡静磁化强度会发生偏转而沿总场方向取向,产生一个横向磁化强度分量,这时突然撤去极化场,磁化强度便在稳定场的作用下以拉莫尔频率进动,其纵向分量逐渐恢复到平衡值,而横向分量逐渐减小到0,在垂直于稳定场 方向上会测量到一个随时间衰减的自由感应衰减信号FID,利用其幅度的变化可以研究物质的T2。该方法要求有较长极化时间,测井速度慢,且电流大,迅速关断电流较困难,若在开关断开后延迟一段时间测量,虽能压制部分干扰,但也丢掉了许多有用信息。

本文发布于:2024-09-21 16:43:29,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/46620.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:回波   流体   仪器
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议