三维超声自动扫描与成像系统研究

摘要
医学超声成像具有使用方便、价格低廉、无电离辐射等优点,在临床中得到广泛应用。传统的二维超声成像只能显示人体组织的某个横截面信息,医生需凭经验想象组织的三维结构,不利于保持诊断结果的客观性和准确性。三维超声成像可以很好地解决这个问题,可以直观显示整个组织的三维空间结构、提取任意切片、测量病灶的体积,使诊断结果更加准确。
医院超声科的医生长时间手持超声探头为很多病人作检查,长期重复操作,腕部反复用力,容易导致医生患肌肉骨骼疾病。为了减轻医生的工作负担以及提高超声诊断的效率,越来越多的机器人辅助超声扫描系统已经被开发出来了,这些系统能够更方便更精确地实现三维超声成像,然而这些系统也具有一定的局限性,存在改进的空间。
本文提出了一种三维超声自动扫描与成像系统。系统主要包含以下设备:医学超声诊断平台Sonix RP、超声探头、工控机、摄像装置Kinect、三维运动台、压力传感器、数据采集卡。空间校准和时间校准完成后,Kinect采集组织表面的深度数据和彩数据,根据该数据绘制组织表面的三维轮廓,划分扫描范围并规划扫描路径。根据扫描路径,三维运动台控制超声探头扫描组织。扫描过程中,保存二维超声图像及位置信息。扫描结束后,用贝塞尔插值算法进行三维重建,实现三维可视化及图像分析功能。
为了验证系统的可行性和准确性,进行了多次定量实验和定性实验。在定量实验中,为了验证系统的成
像精度,多次扫描分辨率体模并测量体模内部的目标物,计算平均值和标准差,并与真实值比较,误差低于0.8%,表明系统的成像精度高。在定性实验中,分别扫描乳腺体模、甲状腺体模、腰椎体模、胎儿体模、人体前臂,进行三维重建并提取正交切片。实验结果表明,本文提出的系统能够实现三维超声自动扫描与成像,具有一定的实用价值。
关键词:医学超声;深度数据;自动超声扫描;三维超声重建
Abstract
Medical ultrasound imaging has been widely used in clinical practice due to its advantages of being easy-to-use, low-cost and non-radiation. Traditional two-dimensional (2D) ultrasound imaging could only provide cross-sectional information of the tissue, doctors should imagine the three-dimensional (3D) structure of the tissue according to their experience,which affects the objectivity and correctness of the diagnosis. 3D ultrasound imaging can well overcome this limitation. It allows viewing an entire structure of tissues in 3D space, extracting arbitrary reslices, measuring the volume of lesions, which make the diagnostic result more accurate.
The doctors at the sonography department often need to hold the ultrasound probe for a long time to examine a large number of patients, long-term repetitive operation and application of pressure lead t
o musculoskeletal deceases easily. In order to reduce the labor burden of the doctor and improve the efficiency of ultrasound diagnosis, more and more robot-assisted ultrasound scanning systems have been developed, making ultrasound imaging more convenient and accurate. However, these systems also have some limitations which need to be overcome.
In this study, we proposed a novel automatic scanning and imaging system for 3D ultrasound. The proposed system consisted of the following equipments: Sonix RP, ultrasound probe, industrial personal computer, Kinect, 3D translating device, force sensor and data acquisition card. After spatial and temporal calibration, Kinect was used to obtain the depth data and color data of the tissue surface. Based on the data, the 3D contour of the tissue can be determined, and the system can plan the scan range and the scan path of the ultrasound probe. With respect to the scan path, the 3D translating device could drove the ultrasound probe to scan the tissue surface. During the scanning process, the B-scans and their positional information were recorded simultaneously. After scanning, Bezier interpolation algorithm was applied for 3D reconstruction. 3D visualization and image analysis could be realized.
In order to verify the feasibility and accuracy of the proposed system, quantitative and qualitative experiments were conducted. In quantitative experiments, to prove the imaging accuracy of the prop
osed system, the resolution phantom was scanned and the inner targets were measured. Mean and standard deviation were calculated and compared with the real value, the experimental results show that the error of volume measurement was less than 0.8%, indicating high imaging accuracy of the proposed system. In qualitative experiments, breast phantom, thyroid phantom, lumbar phantom, fetus phantom and human forearm were scanned,
3D reconstruction was realized and orthogonal slices were extracted. The experimental results show that the proposed system is capable of automatic scanning and imaging for 3D ultrasound, and the proposed system has a certain practical value.
Keywords:Medical ultrasound; Depth data; Automatic ultrasound scanning; 3D ultrasound reconstruction
目录
摘要 ................................................................................................................................... I Abstract ................................................................................................................................. II 第一章绪论 .. (1)遗传漂变
千只眼
1.1 引言 (1)
1.2 超声医疗机器人研究现状 (2)
1.2.1 自动乳腺超声扫查系统 (2)
1.2.2 远程超声扫描系统 (4)
1.2.3 其它类型的超声医疗机器人 (6)
1.3 课题研究意义 (8)
1.4 论文的主要工作和章节安排 (8)
1.4.1 论文的主要工作 (8)
1.4.2 论文的章节安排 (9)
第二章三维超声成像技术 (10)
2.1 引言 (10)
2.2 数据采集 (10)
2.2.1 机械扫描 (10)
2.2.2 自由臂扫描 (12)
2.2.3 二维阵列换能器扫描 (15)
2.3 三维重建 (17)
2.4 三维可视化 (20)
2.5 本章小结 (21)
第三章三维超声自动扫描与成像系统设计 (22)
3.1 系统组成 (22)
3.1.1 系统硬件组成 (22)索尼爱立信 w380c
3.1.2 系统软件组成 (24)
3.2 系统校准 (25)
3.2.1 Kinect使用步骤 (25)
毛霉菌3.2.2 Kinect坐标系与三维运动台坐标系之间的空间校准 (28)
3.2.3 超声图像坐标系与重建体积坐标系之间的空间校准 (30)
3.2.4 时间校准 (31)
3.3 获取组织表面图像并绘制组织表面轮廓 (33)
3.4 划分扫描范围 (34)
3.5 规划扫描路径 (36)
3.6 自动扫描 (37)
采空区处理方法3.7 三维重建 (39)
3.8 三维可视化 (43)
3.9 本章小结 (45)
第四章实验结果与分析 (46)
4.1 定量实验 (46)
4.2 乳腺体模扫描与成像实验 (48)
4.3 甲状腺体模扫描与成像实验 (49)
4.4 腰椎体模扫描与成像实验 (50)
4.5 胎儿体模扫描与成像实验 (51)
4.6 人体前臂扫描与成像实验 (52)
4.7 本章小结 (53)
南京炮兵学院结论 (54)
参考文献 (56)
攻读硕士学位期间取得的研究成果 (63)
致谢 (64)

本文发布于:2024-09-21 16:49:40,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/461798.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:超声   扫描   成像   系统
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议