激光焊机的工作原理和特征有些

激光焊机的工作原理和特征有些
中央民族大学图书馆激光焊接是用高能脉冲激光对工件实施焊接,它以脉冲氙灯作为泵浦源,下面我们一起来看看激光焊机的工作原理和特征有哪些。
1)高的深宽比。因为熔融金属围着圆柱形高温蒸气腔体形成并延伸向工件,焊缝就变成深而窄。
2)最小热输入。因为小孔内的温度非常高,熔化过程发生得极快,输入工件热量很低,热变形和热影响区很小。
3)高致密性。因为充满高温蒸气的小孔有利于焊接熔池搅拌和气体逸出,导致生成无气孔的熔透焊缝。焊后高的冷却速度又易使焊缝组织细微化。
4)强固焊缝。因为炽热热源和对非金属组分的充分吸收,降低杂质含量、改变夹杂尺寸和其在熔池中的分布。焊接过程无需电极或填充焊丝,熔化区受污染少,使得焊缝强度、韧性至少相当于甚至超过母体金属。
5)准确控制。因为聚焦光点很小,焊缝可以高准确定位。激光输出无“惯性”,可在高速下急停和重新起始,用数控光束移动技术那么可焊接复杂工件。
网闸
cp256)非接触大气焊接过程。因为能量光子束,与工件无物理接触,所以没有外力施加工件。另外,磁和空气对激光都无影响。
1)由于聚焦激光比常规方法具有高得多的功率密度,导致焊接速度快,受热影响区和变形都很小,还可以焊接钛等难焊的材料
2)因为光束容易传输和控制,又不需要经常更换焊、喷嘴,又没有电子束焊接所需的抽真空,显着减少停机辅助时间,所以有荷系数和生产效率都高。
3)由于纯化作用和高的冷却速度,焊缝强度、韧性和综合性能高。
4)由于平均热输入低,加工精度高,可减少再加工费用;另外,激光焊接运转费用也较低,从而可降低工件加工本钱。
5)对光束强度和精细定位能有效控制,容易实现自动化操作。
李森科
1)焊接深度有限。
2)工件装配要求高。
3)激光系统一次性投资较高
激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。功率密度小于
104~105W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107W/cm2时,金属外表受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。
空气净化高压电源其中热传导型激光焊接原理为:激光辐射加热待加工外表,外表热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。
用于齿轮焊接和冶金薄板焊接用的激光焊接机主要涉及激光深熔焊接。下面重点介绍激光深熔焊接的原理。
激光深熔焊接一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)构造来完成的。在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达25000C左右,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔
四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,
能量首先沉积于工件外表,然后靠传递输送到内部)。孔壁外液体流动和壁层外表张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。上述过程的所有这一切发生得如此快,使焊接速度很容易到达每分钟数米。
激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦到达或超过此值,熔深会大幅度提高。只有当工件上的激光功率密度超过阈值(与材料有关),等离子体才会产生,这标志着稳定深熔焊的进展。如果激光功率低于此阈值,工件仅发生外表熔化,也即焊接以稳定热传导型进展。而当激光功率密度处于小孔形成的临界条件附近时,深熔焊和传导焊交替进展,成为不稳定焊接过程,导致熔深波动很大。激光深熔焊时,激光功率同时控制熔透深度和焊接速度。焊接的熔深直接与光束功率密度有关,且是入射光束功率和光束焦斑的函数。一般来说,对一定直径的激光束,熔深随着光束功率提高而增加。
光束斑点大小是激光焊接的最重要变量之一,因为它决定功率密度。但对高功率激光来说,对它的测量是一个难题,尽管已经有很多间接测量技术。
光束焦点衍射极限光斑尺寸可以根据光衍射理论计算,但由于聚焦透镜像差的存在,实际光斑要比计算值偏大。最简单的实测方法是等温度轮廓法,即用厚纸烧焦和穿透聚丙烯板后测量焦斑和穿
延边大学校歌
孔直径。这种方法要通过测量实践,掌握好激光功率大小和光束作用的时间。
材料对激光的吸收取决于材料的一些重要性能,如吸收率、反射率、热导率、熔化温度、蒸发温度等,其中最重要的是吸收率。
影响材料对激光光束的吸收率的因素包括两个方面:首先是材料的电阻系数,经过对材料抛光外表的吸收率测量发现,材料吸收率与电阻系数的平方根成正比,而电阻系数又随温度而变化;其次,材料的外表状态(或者光洁度)对光束吸收率有较重要影响,从而对焊接效果产生明显作用。
CO2激光器的输出波长通常为10.6μm,陶瓷、玻璃、橡胶、塑料等非金属对它的吸收率在室温就很高,而金属材料在室温时对它的吸收很差,直到材料一旦熔化乃至气化,它的吸收才急剧增加。采用外表涂层或外表生成氧化膜的方法,提高材料对光束的吸收很有效。
焊接速度对熔深影响较大,提高速度会使熔深变浅,但速度过低又会导致材料过度熔化、工件焊穿。所以,对一定激光功率和一定厚度的某特定材料有一个适宜的焊接速度范围,并在其中相应速度值时可获得最大熔深。图10-2给出了1018钢焊接速度与熔深的关系。
激光焊接过程常使用惰性气体来保护熔池,当某些材料焊接可不计较外表氧化时那么也可不考虑保护,但对大多数应用场合那么常使用氦、氩、氮等气体作保护,使工件在焊接过程中免受氧化。
氦气不易电离(电离能量较高),可让激光顺利通过,光束能量不受阻碍地直达工件外表。这是激光焊接时使用最有效的保护气体,但价格比较贵。
氩气比较廉价,密度较大,所以保护效果较好。但它易受高温金属等离子体电离,结果屏蔽了部分光束射向工件,减少了焊接的有效激光功率,也损害焊接速度与熔深。使用氩气保护的焊件外表要比使用氦气保护时来得光滑。
氮气作为保护气体最廉价,但对某些类型不锈钢焊接时并不适用,主要是由于冶金学方面问题,如吸收,有时会在搭接区产生气孔。

本文发布于:2024-09-22 14:34:08,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/43971.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:焊接   激光   光束   材料   工件   外表   速度   小孔
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议