线性代数第六章二次型试题及答案

第六章    二次型
一、基本概念
n个变量的二次型是它们的二次齐次多项式函数,一般形式为
  f(x1,x2,…,xn)= a11x12+2a12x1x2+2a13x1x3+…+2a1nx1xn+ a22x22+2a23x1x3+
…+2a1nx1xn+ …+annxn2  jasmine revolution =.
它可以用矩阵乘积的形式写出:构造对称矩阵A
,则f(x1,x2,…,xn)= X TAX
称对称阵A为二次型的矩阵, 称对称阵A的秩为二次型的秩.
注意:一个二次型的矩阵A必须是对称矩阵且满足,此时二次型的矩阵是唯一的,即二次型和它的矩阵A(A为对称阵)是一一对应的,因此,也把二次型称为对称阵A的二次型。
实二次型  如果二次型的系数都是实数,并且变量x1,x2,…,xn的变化范围也限定为实数,则称为实二次型.大纲的要求限于实二次型.
标准二次型  只含平方项的二次型,即形如
称为二次型的标准型。
规范二次型  形如的二次型,即平方项的系数只
1,-1,0,称为二次型的规范型。
二、可逆线性变量替换和矩阵的合同关系
对二次型f(x1,x2,…,xn)引进新的变量y1,y2,…,yn,并且把x1,x2,…,xn表示为它们的齐一次线性函数
代入f(x1,x2,…,xn)得到y1,y2,…,yn的二次型g(y1,y2,…,yn). 把上述过程称为对二次型f(x1,x2,…,xn)作了线性变量替换,如果其中的系数矩阵
      c11 c12 … c1n
  C= c21 c22 … c2n
      … … …
      cn1 cn2 … cnn  是可逆矩阵,则称为可逆线性变量替换.下面讲的都是可逆线性变量替换.变换式可用矩阵乘积写出:
,则,从而
知,两个n阶对称矩阵A与B合同且r(A)=r(B)
定理1:二次型经可逆线性变换后,变成新的二次型,它的矩阵
定理2:两个二次型可以用可逆线性变量替换互相转化的充分必要条件为它们的矩阵合同.
三、正交变换化二次型为标准型
定理3:对实二次型,其中,总有正交变换,使
其中 为f的矩阵A的特征值。
因为Q是正交矩阵,则,即经过二次型变换,二次型矩阵不仅合同而且相似。
将二次型用正交变换化为标准形的一般步骤为:
(1)写出二次型的矩阵A
(2)求出A的全部相异特征值,对每一个特征值求出其线性无关的特征向量,并利用施密特正交化方法将其正交单位化,将上面两两正交的单位向量作为列向量,排成一个n阶方阵Q,则Q为正交阵且为对角阵。(3)作正交变换,即可将二次型化为只含平方项的标准型
四、配方法(略,见例).
我是农民的儿子
五、惯性定理和惯性指数
定理4:若二次型经过可逆线性变换化为标准形,则标准型中所含平方项的个数等于二次型的秩。
定理5:一个二次型所化得的标准二次型虽然不是唯一的,但是它们的平方项的系数中,正的个数和负的个数是确定的,把这两个数分别称为原二次型的正惯性指数负惯性指数,这个定理称为惯性定理
一个二次型所化得的规范二次型在形式上是唯一的,称为其规范形,其中的自然数p,q就是原二次型的正,负惯性指数
性质1:两个二次型可以用可逆线性变量替换互相转化的充分必要条件为它们的正,负惯性指数都相等.(即两个实对称矩阵合同的充分必要条件为它们的正,负惯性指数都相等.)
性质2:由正交变换法看出, 实对称矩阵A的正(负)惯性指数就是它的正(负)特征值的个数.
六、正定二次型和正定矩阵
定义1:如果当x创造社1,x2,…,xn不全为0时,有f(x1,x2,…,xn)>0,称二次型f(x1,x2,…,xn)称为正定二次型
如果实对称矩阵A所决定的二次型正定,则称A为正定矩阵, 于是A为正定矩阵也就是满足性质:当X 0时,一定有X TAX>0,且A一定是是对称矩阵。
二次型的正定性是在可逆线性变量替换中保持不变的. 即实对称矩阵的正定性在合同变换时保持不变.
(2)性质与判断
实对称矩阵A正定 合同于单位矩阵. 即存在可逆矩阵使,或者存在可逆矩阵,使得
对任意可逆矩阵C,正定(即合同的矩阵,有相同的正定性)。
A的正惯性指数等于其阶数n.
A的特征值都是正数.
A的顺序主子式全大于0.
顺序主子式:一个n阶矩阵有n个顺序主子式,第r个(或称r阶)顺序主子式即A的左上角的r阶矩阵Ar的行列式|Ar|.
判断正定性的常用方法: 顺序主子式法,特征值法,定义法.
A不可逆
Ax=0有非零解
0是A的特征值
A的列(行)向量组线性相关
阶可逆矩阵:
(是非奇异矩阵);
(是满秩矩阵)
的行(列)向量组线性无关;
齐次方程组只有零解;
总有唯一解;
等价;
可表示成若干个初等矩阵的乘积;
的特征值全不为0;
是正定矩阵;
β可由α1α2,…,αn惟一线性表示
β=x1a1+x2α2+…+xnαn
Ax=β有惟一解x=(x1,x2,…,xn)T,
        A=(α1, α2,…, αn)
r(A)=r(Aβ)=n
|A|≠0
Ax=0只有零解
λ=0不是A的特征值
AB=0A(b1,b2,…, bs)=0, B=( b1, b2,…, bs)
Abj=0, j=1,2,…,s
b1,b2,…,bs均为Ax=0的解(r(A)+r(B)≤n)
bj0An阶方阵时,bj为对应特征值λj=0的特征向量
A的列向量组线性相关,B的行向量组线性相关。
AB=CA(b1, b2,…, br)=(C1, C2,…, Cr)
Abj=Cj,j=1,2,…,r
bjAx=Cj的解.
C1, C2,…, Cr可由A的列向量组α1, α2,…, αs线性表示.
[r亚当 斯密(C)=r(AB)≤乡村社会学r(A)或r(B)]
对外开放格局的形成C的行向量组可由B的行向量组线性表示。
例  题
一、概念型题
1.写出二次型的矩阵
  2题答案:
2.二次型的矩阵是______。
3.矩阵对应的二次型是______。
答案:.
4.已知二次型经正交变换x=Py可化成标准型,则a =
解:
5.已知二次型的秩为2,
(2,1,2)T是A的特征向量,那么经正交变换后二次型的标准型是

本文发布于:2024-09-21 17:43:54,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/437399.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:矩阵   线性   可逆   变量   替换   对称   惯性   特征值
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议