电阻、电容和电感的实际等效模型

信号完整性在高速电路中有着至关重要的作用,而很多信号完整性问题需要用「阻抗」的概念来解释和描述。
    在高频信号下,很多器件失去了原有的特性,如我们经常听到的“高频时电阻不再是电阻,电容不再是电容”,这是咋回事呢?
容抗的概念
电容有两个重要特性,一个是隔直通交,另一个是电容电压不能突变。
简单说,虽然交流电能通过电容,但是不同频率的交流电和不同容值的电容,通过时的阻碍是不一样的,把这种阻碍称之为容抗仪用放大器
容抗与电容和频率的大小成反比,也就是说,在相同频率下,电容越大,容抗越小;在相同电容下,频率越高,容抗越小。
如何理解容抗与电容大小和频率成反比呢?
以RC一阶低通滤波器举例。
Vin通过R1电阻对电容C1进行充电,Vin的电势加在电容C的两个金属极板上,正负电荷在电势差作用下分别向电容的两个极板聚集而形成电场,这称「充电」过程。
若将Vin拿掉,在Vout上加一个负载R2(青部分),电容两端的电荷会在电势差下向负载流走,这称为「放电」过程。(流过电容的电流并不是真正穿过了极板的绝缘介质,指的是外部的电流)
衡量电容充电的电荷数为Q,Q=CV,其中C是常量,所以电荷数和电压呈正比。
C=Q/V,电容量代表了电容储存电荷的能力,微分表达式为:
高世宝电流是单位时间内电荷数的变化量:
结合(1)和(2)两个公式可得到:
从公式可以看出:电容上的电流和电压的变化量成正比,或者说电容上电压的变化量和电流是成正比的
即在电压一定时,电容越大,单位时间内电路中充、放电移动的电荷量越大,电流越大,所以电容对交变电流的阻碍作用越小,即容抗越小。
在交变电流的电压一定时,交变电流的频率越高,电路中充、放电越频繁,单位时间内电荷移动速率越大,电流越大,电容对交变电流的阻碍作用越小,即容抗越小。
容抗用Xc表示,公式如下,其中f是频率,C是容值
因为(),所以容抗也可以用如下的公式表示:
我们接着往下看一看感抗的概念。
感抗的概念
电感的特性是隔交通直,与电容是相反的;所以说容抗和感抗的性质和效果几乎正好相反,而电阻则处在这两个极端中间。
感抗与电感的大小和频率成正比,也就是说,在相同频率下,电感越大,感抗越大;在相同电感下,频率越大,感抗越大。
感抗用XL表示,公式如下,其中是信号频率,L是感值
因为(),所以感抗的公式可以用如下表示:
感抗和容抗又被称为电抗,电路的总的阻抗Z由电阻R和电抗X组成。
掌握了预备知识,我们再来看电阻、电容和电感的实际等效模型。
理想的电阻、电容和电感就是如下的这样子,在实际中并不存在,电阻里面会有寄生电容和寄生电感在,在电容里面会有寄生电阻和寄生电感的存在,在电感里面有寄生电阻和寄生电容。
理想电阻器
理想电阻的阻抗即为阻值R:
电阻实际等效模型
电阻上会存在寄生并联电容C寄生串联电感L的存在。
根据上图可得电阻的实际等效阻抗为:
化简可得:
实际电阻器的阻抗和频率曲线,有两个节点,分别为和频率小于时,呈现电阻特性,在和之间,呈现电容减少阻抗,频率大于,呈现电感增加阻抗的特性。
f1和f2分别对应RC滤波器的截止频率点和容抗和感抗相等时的频率点。
理想电容器
康明斯伟力
理想电容器阻抗如下图所示,和频率呈反比,随着频率的增加,阻抗逐渐减小,由于理想电容器中无损耗,等效串联电阻ESR为零。
理想电容器的阻抗Z公式为:
电容实际等效模型
理想的电容器在实际中是不存在的,电容的实际模型是一个ESR串联一个ESL,再串联一个电容,ESR是等效串联电阻,ESL是等效串联电感,C是理想的电容。
所以上述模型的复阻抗为:
针对以上公式(公式较长,左滑看全部):
时,电容器表现为容性。
时,电容器表现为感性,因此会有一句话叫高频时电容不再是电容,而呈现为电感,这个电感不是说电容变成了电感,而是指此时的电容拥有了与电感类似的特性。
时,此时容抗矢量等于感抗矢量,电容的总阻抗最小,表现为纯电阻特性,此时的f称为电容的自谐振频率
王玉溪
自谐振频率点是区分电容是容性还是感性的分界点,高于谐振点时,“电容不再是电容”,因此退耦作用将下降。实际电容器都有一定的工作频率范围,在工作频率范围内,电容才具有很好的退耦作用。ESL是电容在高于自谐振频率点之后退耦功能被消弱的根本原因。
龙岩学院学报
下图是实际电容器的频率特性。
理想电感器
理想电感的阻抗为:
电感实际等效模型
电感器的等效模型和电阻是一样的,如下所示:
阻抗计算公式和电阻也是一样的,即:1978年12月发生了什么大事
从下图和公式可以看出,理想的电感的阻抗是随着频率的增加而变大的。
等效电感的阻抗图呈一个倒V型,正好和电容相反,倒V的最高点称为电感的自谐振点
当系统阻尼R提供的衰减不足时,容抗和感抗相互抵消,能量在LC间来回传递,这就是谐振。
频率低于自谐振频率SRF时,电感感抗随着频率增加而增加。
频率等于自谐振频率SRF时,电感感抗达到最大。
频率高于自谐振频率SRF时,电感感抗随着频率增加而减少。
电感自谐振频率SRF部分不做过多赘述,在后续的电感选型文章中会重点介绍。
总结
理想的电阻、电容和电感在实际中不存在,都会存在寄生参数,从而在不同的频率下,表现出的特性不同,只有在特定的频率范围内才能发挥出其本身的特性。

本文发布于:2024-09-22 17:40:31,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/43122.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:电容   频率   电感   电阻
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议