除氧器和给水加热器的对比_分析

文章编号:1006-7043(2001)06-0012-04
除氧器和给水加热器的对比火用分析
庞凤阁,明申金,贾 辉,闫素英
(哈尔滨工程大学动力与核能工程学院,黑龙江哈尔滨150001)
摘   要:对热力除氧器和给水加热器进行了对比火用分析,从除氧器与低压给水加热器的火用分析经济指标比
较来看,低压给水加热器火用效率较除氧器排汽回收情况及除氧器排汽不回收都要低(63.6>61.0%>53.9%),而火用损系数较除氧器排汽回收和排汽不回收两种情况都要高(0.201%<0.215%<0.260%).所以,除氧器的火用经济指标较给水加热器要好些.得出结论是:在动力装置中除氧器和给水加热器的火用损失系数都不大,除氧器的火用效率略高于给水加热器.从能量利用经济性的观点来看,除氧器可以取代给水加热器.这样不仅可以提高循环的热效率,而且可以增加设备和系统的使用寿命.①关 键 词:火用分析;除氧器;给水加热器中图分类号:T K223 文献标识码:A
  目前在某些船用蒸汽动力装置中,未设除氧器而设有给水加热器,除氧功能是由冷凝器来兼任的.由于冷凝器运行时参数的波动,除氧效果得不到保障,这造成了整个动力装置的腐蚀严重,从而带来安全性
和可靠性上的隐患.若在这些动力装置中采用除氧器而不设给水加热器,则可以很好地解决氧腐蚀带来的问题.本文正是从火用分析的角度来论证用除氧器取代给水加热器的可行性.
1 物流火用
对于一个物流而言,设其热力学参数分别为压力p (Pa ),温度T (K ),比熵s (J Πkg ・K )、比焓h (J Πkg ),流量为G (kg Πs ),流速为u (m Πs ),单位质量位势gz (J Πkg ),则由火用的定义得出此物流火用的计算式
[1~4]
E x =G 〔(h -h e )-T e (s -s e )+
u
2
2
+gz 〕
(1)
  物流的比火用为
e x =E x ΠG
(2)
式中:h e ,s e 分别为物流与环境处于力平衡和热平衡时所具有的比焓与比熵.
许多情况下,动能和势能项很小,可以忽略.此时物流火用的计算式为
E x =G [(h -h e )-T e (s -s e )](1a )  比火用为
e x =E x ΠG =(h -h c )-T e (s -s e )(2a
)
pdsc
图1 除氧器和给水加热器火用分析模型
Fig.1 Exergy analyses model of the deatertor
and the feed water heater
式中T e 为环境温度,K.
2 除氧器和给水加热器对比火用分析
模型
热力除氧器和管壳式给水加热器火用分析模型
如图1所示[5]
.假设除氧器和给水加热器的进水温度和进汽的热力学参数分别一致.不妨设进水温度为T w ;进汽温度为T s ,比火用为e xs .且设环境温度为T e ;而除氧器的进水比火用为e xw ,出水温度为T o ,比火用为e o ,排汽温度为T c ,比火用为e xc ;给水加热器的进水比火用为e ′xw ,出水温度为T ′o ,比火用为e ′xo ,冷凝水温度为T ′sat ,比火用为e ′xsat .又设除氧器的进水流量为G w ,进汽流量为G s ,出水流量
①收稿日期:2001-05-28;修订日期:2001-11-19.  作者简介:庞凤阁(1945-),男,吉林公主岭人,教授,主要研究方向为核动力装置性能.
第22卷第6期       哈 尔 滨 工 程 大 学 学 报       Vol.22,№.62001年12月        Journal of Harbin Engineering University         Dec.,2001
为G
o
ldo,排汽流量为G c,除氧器本体压力为p,除
氧器内的火用损失为ΔE;设给水加热器的进水流量
同样为G
w
,而进汽流量为G′s,且进汽完全凝结
成饱和水,汽侧压力为p′
s
,水侧压力为p′w,给水加热器内的火用损失为ΔE′.
将式(2)应用于除氧器和给水加热器有
  进汽比火用为
e xs=(h s-h e)-T e(s s-s e)+u2s
2
+gz s
  除氧器进水比火用为
e xw=(h w-h e)-T e(s w-s e)+u2w
2
+gz w
  除氧器出水比火用为
e xo=(h o-h e)-T e(s o-s e)+u2o
2
+gz o
  除氧器的排汽比火用为
e xc=(h c-h e)-T e(s c-s e)+u2c
2
+gz c
  给水加热器进水比火用为
e′xw=(h′w-h e)-T e(s′w-s e)+u′2w
2
+gz′w
  给水加热器出水比火用为
e′xo=(h′o-h e)-T e(s′o-s e)+u′2o
2
+gz′o
  给水加热器凝结水的比火用为
e′xsat=(h′sat-h e)-T e(s′sat-
s e)+u′2sat
2
+gz′sat
  从而,对于除氧器:
进水带入的火用为
E w=G w e xw   进汽带入的火用为
E s=G s e xs   出水带出的火用为
E o=G o e xo   排汽带出的火用为
E c=G c e xc   同理,对于给水加热器:进水带入的火用为
E′w=G w e′xw   进汽带入的火用为
E′s=G′s e xs   出水带出的火用为
E′o=G w e′xo   凝结水带出的火用为
eisE′c=G′s e′xsat
广西劳动力市场  对于除氧器,若有排汽回收装置,则E
c并未在除氧这一过程中损失掉.在此种条件下,除氧器的火用效率为
η
ex
=
E c+E o
E w+E s
×100%
  设除氧器所在的动力装置的总供给火用为E
t
,则除氧器的火用损系数为
Δη
ex
=
(E w+E s)-(E c+E o)
E t
×100%
  又若除氧器的排汽直接排入环境而浪费掉,则除氧器的火用效率为
η
ex
=
E o
E w+E s
×100%
相应地,火用损失系数为
Δη
ex
=
E w+E s-E o
E t
×100%
  对船用给水加热器而言,由于凝水直接排入冷凝器,所以凝水火用损失掉,故其火用效率为
η′
ex
=
E′o
E′w+E′s
×100%
  假设动力装置的总供给火用也为E
t
,则火用损失系数为
Δη′
ex
=
E′w+E′s-E′o
E t
×100%
3 除氧器与给水加热器对比火用分析实例
已知条件如表1所示.
  对于除氧器,由质量守恒
G w+G s=G o+G c
能量守恒
G w h w+G s h s=G o h o+G c h c
以及排汽率定义
χ=G
cΠG s
解出
G s=
G w(h o-h w)
h s-(1-χ)h o-χh c
=30.87tΠh
从而有
G c=0.926tΠh,G o=279.944tΠh
  对于低压给水加热器,能量守恒为
G w h′w+G′s h s=G w h′o+G′s h′sat
3
1
第6期              庞凤阁,等:除氧器和给水加热器的对比火用分析             
表1 热力除氧器及低压给水加热器已知参数表
T able 1 G iven d ata for the deaerator and the feed w ater heater
流量(t ・h
-1
)绝对压力ΠMpa
温度Π℃
氧器本  体 
0.12
进  水2500.440进  汽待定0.2饱和出  水待定 0.12饱和排  汽排汽率3%
 0.12饱和
低压给水加热器
汽侧压力0.2水侧压力  2.4进  水250  2.440进  汽待定0.2饱和出  水250  2.4105冷凝水
同进汽0.2
饱和
表2 除氧器及低压给水加热器热力系统各物流参数表
T able 2 Data of w orking fluid for the deaerator and the feed w ater heater
压力MPa
温度℃
比焓kJ Πkg
小马拉多纳
比熵kJ Π(kg ・K )
进  汽0.2  120.21  2706.31  7.1269  除氧器进水0.4  40    167.86  0.5722  除氧器出水0.12  104.79  439.36    1.3609  除氧器排汽0.12  104.79  2683.46  7.2984  加热器进水  2.4   40    169.63  0.5719  加热器出水  2.4   105    440.45    1.3631  加热器凝水0.2   120.21  504.69    1.5301  环  境
0.1   
20   
84.01 
0.2965 
解得
G ′s =
G w (h ′o -h ′w )
h s -h ′sat
=30.75t Πh
  2)确定各物流的比火用
由1)中查得物流及环境参数,由式(2a )确定各物流的比火用为
e xw =(h w -h e )-T e (s w -s e )=
2.9092kJ Πkg
e xs =(h s -h e )-T e (s s -s e )=619.9682kJ Πkg
e xo =(h o -h e )-T e (s o -s e )=43.3211kJ Πkg
e xc
=(h c -h e )-T e (s c -s e )=
546.8430kJ Πkg e ′xw =(h ′w -h e )-T e (s ′w -s e )=4.8865kJ Πkg e ′xo =(h ′o -h e )-T e (s ′o -s e )=
43.7662kJ Πkg e ′x sat
=(h ′sat -h e )-T e (s ′sat -s e )=59.0502kJ Πkg
  3)确定火用分析指标
(a )除氧器的火用分析指标
在排汽有回收装置的情况下:  火用效率
ηex =G o e xo +G c e xc
G w e xw +G s e xs ×100%=63.6%  火用损失
ΔE x =(G w e xw +G s e xs )-(G o e xo +
G c e xc )=2008.85kW   火用损失系数
Δηex =
ΔE x
E t
×100%=0.201%  在认为排汽火用损失掉的情况下:
  火用效率ηex =
G o e xo
G w e xw +G s e xs
×100%=61.0%
  火用损失
ΔE x =(G w e xw +G s e xs )-G o e xo =2149.51kW   火用损失系数
Δηex
=ΔE x
E t
×100%=0.215%・
41・                哈 尔 滨 工 程 大 学 学 报              第22卷
  (b )低压给水加热器的火用分析指标火用效率
η′ex =G w e ′xo
G w e ′xw +G ′s e xs ×100%=53.9%  火用损失ΔE ′x =(G w e ′xw +G ′s e xs )-G w e ′xo =
2595.58kW
  火用损失系数
Δη′ex =
ΔE ′x
E t
×100%=0.260%4 结 论
1)除氧器及低压给水加热器的火用效率是不
低的(>50%),且在整个动力装置中它的火用损失
系数又是相当低的(<0.5%),几乎可以忽略.所
以除氧器和低压给水加热器不是动力装置火用损失的主要环节.
2)从除氧器与低压给水加热器的火用分析指
标比较来看,低压给水加热器火用效率较除氧器排汽回收的情况及除氧器排汽不回收的情况都要低(63.6%>61.0%>53.9%);而火用损系数较除氧器排汽回收和排汽不回收两种情况都要高
(0.201%<0.215%<0.260%).所以,除氧器的火用经济指标较给水加热器要好些.
3)除氧器与低压给水加热相比,除氧器具有改善动力装置安全性、可靠性及提高装置的运行寿命的功能是低压给水加热器所没有的.因此,用它取代低压给水加热器,既可以保证除氧又可以达到给水加热的要求.
参考文献:
[1] 沈维道,郑佩芝,蒋淡安.工程热力学[M ].北京:高
等教育出版社,1983.
[2] 薛汉俊,戚正文.核能动力装置[M ].北京:原子能出
版社,1990.
[3] [俄]布罗章斯基B M ,王加璇,齐起生.火用方法及应用
[M ].北京:中国电力出版社,1996.
[4] 陈大燮.动力循环分析[M ].上海:上海科学技术出
版社,1981.
[5] 明申金.热力除氧器传热传质分析[D ].哈尔滨:哈
尔滨工程大学,2000.
[责任编辑:李玲珠]
(上接第3页)
图5 非定常时K F s -J 曲线图及对比
Fig.5 K F s to J curves of unsteady condition
  在实际情况中,横向力系数K F z 和垂向力系数K F y 的数量应是相同的,本文的计算结果正表明了这一点.计算结果中的K T 、K Q 随进速系数J 的变化规律符合实际情况.
计算结果表明,本文所提供的全方向推进器运动水动力性能预报的升力面方法可以作为工程设计应用的基础.
参考文献:
[1] 难波直爱,清水彻,渡边昶彦,等.全方向推进器の开发
(その1)[J ].关西造船协会志.1988,210:3-10.[2] 凌志浩,佐々木康夫,高桥通雄.境界要素法の直接
法にまゐ•口 うまわりの三次元流れ解析(第2
报.定常な船尾伴流中)[J ].日本造船学会论文集,
rtu1986(159):44-58.
[3] 戴遗山.势流理论与数值方法[M ].哈尔滨:哈尔滨
船舶工程学院出版社,1992.
[4] 黄 胜.船舶螺旋桨升力面理论[M ].哈尔滨:哈尔
滨工程大学出版社,1984.
[5] 王国强,胡寿根.螺旋桨性能和压力分布预估方法
的改进[J ].中国造船,1988,100:8-16.
[6] MARUO H ,L KCHA TE M ,ANDO M.Theoretical
prediction of unsteady propeller characteristic in the non-uniform wake field[A ].15th symposium on naval hydrodynamics[C].1984.
[责任编辑:刘玉明]
51・第6期              庞凤阁,等:除氧器和给水加热器的对比火用分析             
H YD R ODYNAMIC CHARACTERISTICS OF LATERAL MOTION OF All-AZIMUTH PR O2 PE LL ERΠW A N G L e-shengΠ2001,22(6):1-3
A mathematic model was established for the calcula2 tion of unsteady hydrodynamic characteristics for the lat2 eral motion of an all-azimuth propeller using the conv2 entional propeller lifting surface th
eory and the potential flow theory and the Green theorem,and numeric predic2 tions were then made for the hydrodynamic characteris2 tics of lateral movement of the all-azimuth propeller using the finite basic solution method and the unsteady vortex grid method.The comparison of the results of computa2 tion with the Japanese tank test results,and the results of computation obtained using the lifting line theory show that the results of computation obtained using the theo2 retical prediction method are in good agreement with the experimental data.
K ey w ords:variable vector propeller;transverse move2 ment lifting-surface theory;unsteady
EFFECT OF SEABE D SLOPE AN D PIPE-EN D TENSION ON LAYING OF LARGE-DIAMETER PIPE L INE IN SHALLOW SEAΠH E Y an-pi ng, D EN G De-heng,TA N Jia-huaΠ2001,22(6):4-8
The effect of seabed slope and pipe-end tension on laying of large-diameter pipelines in shallow sea was cal2 culated and analysed using FEM method for35combina2 tions of operating conditions.It is concluded from the re2 sult of calculations that laying a pipeline from deep water to shallow water is safer.It is suggested that a tension of about75t should be maintained for the pipeline under study.
K ey w ords:seabed pipeline;nonlinear analysis;large de2 fection
CONTR OL FOR MATING OPERATION OF MU LTI—ARM UN DERWATER VEHIC L EΠDA I X ue-f eng,B IA N Xi n-qian,S HI Xiao-chengΠ2001, 22(6):9-11
BSAV-I is an experimental underwater robotic ve2 hicle with six degrees of freedom and four2DOF manip2 ulators developed for searching and catching circles in water.In order to achieve autonomous operation,the mating operation was abstracted to an automation model based upon the operating characteristics,and the coordi2 nation of manipulators and the coordinated control of ro2 botic vehicle and manipulators were realized using dis2 crete event system(DES)theory.
K ey w ords:underwater vehicle;coordinated control;dis2 crete event system;supervisory control,automaton COMPARATIVE EXERG Y ANALYSES FOR DEARAT OR AN D FEE D WATER HEATERΠPA N G Feng-ge,M IN G S hen-ji n,J IA Hui,YA N S u-yi ngΠ2001,22(6):12-15
Exergy analyses were carried out for thermal deaer2 ator and feed water heater by calculating and comparing their exergy efficiencies.The results of analyses show that the exergy of feed water heater is lower than that of thermal deaerator(63.6>61.0%>53.9%),and the exergy loss coefficient of feed water heater is higher than that of thermal deaerator(0.201%<0.215%<0. 260%),while the exergy loss coefficients of both equip2 ment are lower among the equipment used in the power plant.
And the exergy efficiency of thermal deaerator is some what higher than that of feed water heater.Ther2 fore,from the viewpoint of exergy efficiency,it is feasible using the thermal deaerator to replace the water heater at some marine power plants,thereby prolonging the work2 ing life of a power plant.
K ey w ords:exergy analysis;deaerator;feed water heater MODE LL ING OF FUZZ Y MODE L AN D CON2 TR OL FOR SHIP STEERINGΠZA N G Chuan-de, ZHA O Guo-liangΠ2001,22(6):16-19
A fuzzy model is proposed for ship steering control using the fuzzy system theory and parameters for the fuzzy model are developed and evaluated using the neural network method.The fuzzy model is used for establish2 ment and selection of ship steering control schemes.Re2 sults of the simulation show that the fuzzy model and the method used to establish the parameters are effective and the effect of ship steering control is good.
K ey w ords:shipsteering;fuzzy model;neural network RE LAY PR OTECTION BASE D FAU LT DIAG2 N OSIS OF SHIP POWER SUPPLY SYSTEMΠJ I Xiao-hui,CON G W ang,ZHA N G He-li nΠ2001,22 (6):20-23
The design of the expert fault diagnosis system for the ship electrical system is described through an
alysis of electrical system fault characteristics.The whole diagno2 sis system consists of two modules:first fault diagnosis and second fault diagnosis.Framework is combined with generation for expression of knowledge,and fuzzy rules are introduced to solve uncertainty issues during recog2 nization and treatment of faults.Simulation results proved the effectiveness of the fault diagnosis system for ship power supply system.
K ey w ords:ship;electrical power system;fault diagno2 sis;expert system;relay
STEP AN D INTERNET BASE D SHIP DATA CENTERΠW A N G Neng-jian,Q IU Chang-hua, ZHA N G Jia-tai,X U E KaiΠ2001,22(6):24-28 Thoughts on building ship data center in china by adopting STEP and distribution object technology are de2 tailed and an experimental system including ship engi2 neering and product data management(SEPDM)sub2 system and data exchanging subsystem is suggested. Three methods based on FTPΠASCⅡfiles,WEBΠData Base and CORBAΠdynamic data are used for data ex2 change.SEPDM can be used to manage the distributed design groups,tasks,design documents,data files and product database,etc.

本文发布于:2024-09-22 16:43:13,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/424470.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:火用   加热器   给水   分析   低压   损失   动力装置
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议