石墨烯的研究进展

石墨烯的研究进展
(姓名:陈飞虎        学号:SA12231016)
摘要:石墨烯是目前唯一的二维自由态原子晶体,具有其独特而优异的导电性、导热性及机械性能,因而受到全世界科学家的广泛关注。就在这八年的研究发展中,石墨烯的性质、制备及其惊人广泛的应用前景都取得了丰硕的成果。本文主要介绍近几年石墨烯的研究成果,较系统的阐述石墨烯的特性、制备方法及其主要应用。最后,本文还根据石墨烯的发展趋势简要地展望未来石墨烯研究热点及其应用前景。
关键词:石墨烯  性质  制备  主要应用
引言
自 2004 年英国曼彻斯特大学 Geim 教授[1]首次制备出石墨烯( Graphene) 以来,其独特的性质备受科学家们的关注,激起了各领域科学家的极大兴趣,由此有关石墨烯的研究报道如雨后春笋般涌现,在Science、Nature上相关报道就有400余篇。因此,石墨烯是继纳米碳管、富勒烯球后的又一重大发现。石墨是三维(或立体)的层状结构,是以范德华力结合起
来的,即层与层之间属于分子晶体。但是,由于同一平面层上的碳原子间结合很强,极难破坏,所以石墨的溶点也很高,化学性质也稳定,其中一层就是石墨烯(如图一),石墨烯是由单层碳原子组成的六方蜂巢状二维结构。纯净的石墨烯是一种只有一个原子厚的结晶体,具有超薄、超坚固和超强导电性能等特性,石墨烯具有优异的电学、热学和力学性能,因而可望在高性能纳电子器件、复合材料、场发射材料、气体传感器及能量存储等领域获得广泛应用。
统一平台
    图一  石墨烯结构        图二  (a)石墨烯、(b)富勒烯、(c)纳米碳管、(d)石墨
1.石墨烯的性质
石墨烯是单层碳原子紧密堆积而形成的炭质新材料,厚度只有0.335 nm,是目前世界上最薄的二维材料,其C-C键长约为 0.142 nm[2]。石墨烯是构建其他维数碳质材料的基本结构单元,它可以包裹起来形成零维富勒烯 C60、一维碳纳米管 CNT和三维石墨等(如图二)。石墨烯具有优异的力学、热学和电学性能:强度达130 GPa,比世界上最好的钢高100倍,是目前强度最高的材料[3]; 热导率可达 5 000 W·m广州湾- 1·k- 1音乐什么时候传入中国,是金刚石的3倍[4]; 石墨烯载流子迁移率高达15 000 cm2·V- 1·S- 1,是商用硅片的10倍以上[5-6]。 石墨烯还有超大的比表面积( 2 630 m2/ g)[7]、室温量子霍尔效应[8]和良好的铁磁性[9],是目前已知的在常温下导电性能最好的材料,电子在其中的运动速度远超过一般导体,达到了光速的 1/300。此外,单层石墨烯(SLG)表现出独特的电子构架,能带在第一布里渊区出现两个不等价的的锥点K和K '(如图三),并且因为它只有连续的单层原子晶体,所以它的理论光学透射率可高达97.7%。基于它的这种特殊结构,还表现出了异常的整数量子霍尔行为。其霍尔电导等于 2e2/h,6e2/h,10e2/h,…,为量子电导的奇数倍,且可以在室温下观测到。使因其具有分数的量子霍尔效应、永不消失的电导率等一系列奇特性质[10—13],因而备受关注。
图三  SLG的电子能带结构示意图
2.石墨烯的制备
制备纳米材料的实验表明了这种结构的物理特性与其制备方法和合成条件极其相关,这种特性同时也是石墨烯所极具有的固有属性。也就是说,如果对同一样品用不同的合成条件,它的热传导系数具有相当大分布范围,约2-3个数量级。本篇论文详细地概括了合成石墨烯的主要制备方法,因此,在制备纳米样品之前,应该考虑到制备样品所带来的技术性问题。
自从首次制备和研究石墨烯以来,在随后几年里就阐述了许多不同的合成这种材料的方法,由此我们便会觉得惊奇,为什么在之前的许多年里没有发现石墨烯?其实合成石墨烯最困难的阶段不是其制作样品的本身,而是识别和建立它们的主要参数(如尺寸,层数等)。根据石墨烯开创性研究的作者所著,单个石墨烯样品能够成功得以制备和观察,是由于其石墨烯是在覆盖有合适厚度SiO多媒体课件制作工具2层的Si衬底上得到的,故此时石墨烯在光学显微镜得以观察,与没有衬底时所得的干涉图像不同。衬底上氧层的厚度相当严格——这个参数改变5%,石墨烯就变得完全不可见。以下主要介绍几种石墨烯的制备方法:
2.1 机械剥离法
Manchester 大学 Geim 领导的研究组 2004 年在 Science 上发表论文, 报道了他们用机械剥离法(mechanical exfoliation)制备得到了最大宽度可达 10μm 的石墨烯片。 其方法主要是用氧等离子束在高取向热解石墨(HOPG)表面刻蚀出宽 20 μm-2mm、深 5 μm 的槽面, 并将其压制在附有光致抗蚀剂的 SiO2/Si 基底上, 焙烧后, 用透明胶带反复剥离出多余的石墨片, 剩余在 Si 晶片上的石墨薄片浸泡于丙酮中, 并在大量的水与丙醇中超声清洗, 去除大多数的较厚片层后得到厚度小于 10 nm 的片层, 这些薄的片层主要依靠范德华力或毛细作用
(capillary forces)与 SiO2紧密结合, 最后在原子力显微镜下挑选出厚度仅有几个单原子层厚的石墨烯片层。此方法可以得到宽度达微米尺寸的石墨烯片, 但不易得到独立的单原子层厚的石墨烯片, 产率也很低, 因此, 不适合大规模的生产及应用。
2.2 氧化石墨-还原法
石墨先经化学氧化得到边缘含有羧基、羟基,层间含有环氧及羰基等含氧基团的石墨氧化物(graphite oxide), 此过程可使石墨层间距离从 0.34nm扩大到约 0.78 nm, 再通过外力剥离(如超声剥离)得到单原子层厚度的石墨烯氧化物(grapheme oxide),进一步还原可制备得到石墨烯。 这种方法制备的石墨烯为独立的单层石墨烯片, 产量高, 应用广泛。
石墨的氧化方法主要有 Hummers、Brodie和 Staudenmaier三种方法, 它们都是用无机强质子酸(如浓硫酸、发烟 HNO3或它们的混合物)处理原始石墨, 将强酸小分子插入石墨层间, 再用强氧化剂(如 KMnO4、KClO4等)对其进行氧化. Hummers 氧化法的优点是安全性较高; 与 Hummers 法及 Brodie法相比, Staudemaier 法由于使用浓硫酸和发烟硝酸混合酸处理石墨, 对石墨层结构的破坏较为严重. 氧化剂的浓度和氧化时间对制备的石墨烯片的大小及厚度有很大影响[14],因此, 氧化剂浓度及氧化时间需经过仔细筛选, 才能得到大小合适的
单层氧化石墨烯片。
2.3 化学气相沉积法
化学气相沉积(CVD)法提供了一种可控制备石墨烯的有效方法, 与制备 CNTs 不同, 用 CVD 法制备石墨烯时不需颗粒状催化剂,它是将平面基底(如金属薄膜、金属单晶等)置于高温可分解的前驱体(如甲烷、乙烯等)气氛中, 通过高温退火使碳原子沉积在基底表面形成石墨烯, 最后用化学腐蚀法去除金属基底后即可得到独立的石墨烯片. 通过选择基底的类型、生长的温度、前驱体的流量等参数可调控石墨烯的生长(如生长速率、厚度、面积等), 此方法已能成功地制备出面积达平方厘米级的单层或多层石墨烯, 其最大的优点在于可制备出面积较大的石墨烯片[15]
该方法已成功地用于在多种金属基底表面(如Ru(0001)[16], Pt(111)[17], Ir(111)[18]等)制备石墨烯。最近, Kong[19]防暴警察和 Kim[20]研究组分别用 CVD 法在多晶Ni 薄膜表面制备了尺寸可达到厘米数量级的石墨烯; Ruoff 研究组[21]在 Cu 箔基底表面上采用 CVD法成功地制备了大面积、高质量石墨烯, 而且所获得的石墨烯主要为单层结构。
2.4 外延生长法
该方法一般是通过加热 6H-SiC 单晶表面, 脱附 Si(0001 面)原子制备出石墨烯[22-26]。先将 6H-SiC单晶表面进行氧化或 H2刻蚀预处理, 在超高真空下(1.33×10-8Pa)加热至 1000 ℃去除表面氧化物, 通过俄歇电子能谱(Auger electron spectroscopy)确认氧化物已完全去除后, 样品再加热至 1250-1450 ℃并恒温 10-20 min, 所制得的石墨烯片层厚度主要由这一步骤的温度所决定, 这种方法能够制备出 1-2碳原子层厚的石墨烯, 但由于 SiC 晶体表面结构较为复杂, 难以获得大面积、厚度均一的石墨烯[27]Berger等利用该方法分别制备出了单层[28]和多层[29]石墨烯并研究了其性能。与机械剥离法得到的石墨烯相比,外延生长法制备的石墨烯表现出较高的载流子迁移率等特性, 但观测不到量子霍尔效应。
2.5电化学方法
歌剧的魔咒Liu[30]通过电化学氧化石墨棒的方法制备了石墨烯. 他们将两个高纯的石墨棒平行地插入含有离子液体的水溶液中, 控制电压在 10-20 V, 30 min后阳极石墨棒被腐蚀, 离子液体中的阳离子在阴极还原形成自由基, 与石墨烯片中的 π 电子结合, 形成离子液体功能化的石墨烯
片, 最后用无水乙醇洗涤电解槽中的黑沉淀物, 60 ℃下干燥 2 h 即可得到石墨烯. 此方法可一步制备出离子液体功能化的石墨烯, 但制备的石墨烯片层大于单原子层厚度。
2.6 电弧法
石墨烯还可以通过电弧放电的方法制备, 在维持高电压、大电流、氢气气氛下, 当两个石墨电极靠近到一定程度时会产生电弧放电, 在阴极附近可收集到 CNTs 以及其它形式的碳物质, 而在反应室内壁区域可得到石墨烯, 这可能是氢气的存在减少了CNTs及其它闭合碳结构的形成. Rao 等[31]通过电弧放电过程制备了 2-4 单原子层厚的石墨烯. 此法也为制备 p 型、n 型掺杂石墨烯提供了一条可行途径。
2.7有机合成法
Qian[32]运用有机合成法制备了具有确定结构而且无缺陷的石墨烯纳米带。他们选用四溴 酰亚胺(tetrabromo-perylene bisimides)作为单体, 该化合物在碘化亚铜和 L-脯氨酸的活化下可以发生多分子间的偶联反应, 得到了不同尺度的并苝酰亚胺,实现了含酰亚胺基团的石墨烯纳米带的高效化学合成; 他们还通过高效液相分离出了两种三并 酰亚胺异构体, 并结
合理论计算进一步阐明了它们的结构。
2.8 其它方法
石墨烯的制备方法除了上面介绍的外,还有高温还原、光照还原、微波法等。如何综合运用各种石墨烯制备方法的优势,取长补短,解决石墨烯的难溶解性和不稳定性的问题,完善结构和电性能等是今后研究的热点和难点,也为今后石墨烯的合成开辟了新的道路。
另外, 如 Hamilton 等[33]将石墨在邻二氯苯(ODCB)中超声分离得到了石墨烯. ODCB 作为分散剂, 具有沸点高, 与石墨烯之间存在的 π-π相互作用使其表面张力(36.6×10-3J·m-2)与石墨剥离时所需的张力((40-50)×10-3J·m-2)相近等优点, 在超声的辅助下, 可以很容易地从微晶人造石墨、热膨胀石墨以及高取向热解石墨等表面剥离开石墨烯片,但该法很难制备出单层的石墨烯.
Chakraborty 等[34]在成熟的石墨 钾金属复合物基础上制备了聚乙二醇修饰的石墨纳米片, 在有机溶剂及水中均溶解性较好. Wang 等[35]利用 Fe2+在聚丙烯酸阳离子交换树脂中的配位 掺碳作用, 发展了一种新型的、大规模制备石墨烯的方法: 原位自生模板法(in situself-
generating template), 该法具有产率高、产品晶型好的特点, 制备的石墨烯能作为甲醇燃料电池 Pt催化剂的优良载体. 最近, 复旦大学 Feng首先采用Li 方法[36]制备石墨烯溶液后, 然后通过高真空(P≈20Pa)低温冷冻干燥制备了高度疏松的粉体石墨烯,该粉状物只需经简单的超声就能在 DMF 等有机溶剂中重新形成稳定的胶体分散体系[37], 该法提供了快速简便地大规模制备固态单层石墨烯的途径,克服了传统方法只能制备分散、稳定石墨烯溶液的缺点, 为石墨烯商业化应用打下了良好基础.

本文发布于:2024-09-21 03:35:20,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/413458.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:石墨   制备   方法   得到   具有   结构
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议