疲劳分析软件 ANSYS FE_SAFE 简介(转)

问题1ANSYS后处理疲劳功能与ANSYS/Fe-safe疲劳功能的关系是什么?
回答1ANSYS后处理疲劳功能是依据线性累积损伤理论,利用S-N曲线、应力时间历程以及雨流计数技术直接计算疲劳寿命使用系数,属于简单的名义应力疲劳寿命评估,对疲劳的影响因素的考虑有限,适用于粗略估算。ANSYS/Fe-safe则是专用的高级疲劳分析模块,采用先进的单/双轴疲劳计算方法,允许计算弹性或弹塑性载荷历程,综合多种影响因素(如平均应力、应力集中、缺口敏感性、(焊接成型等)初始应力、表面光洁度、表面加工性质等),按照累积损伤理论和雨流计数,根据各种应力或应变进行疲劳寿命和耐久性分析设计,或者根据疲劳材料以及载荷的概率统计规律进行概率疲劳设计以及疲劳可靠性设计,或者按照断裂力学损伤容限法计算裂纹扩展寿命。Fe-safe疲劳计算技术先进,精度很高,广泛实用于各类金属、非金属以及合金等材料。总之,ANSYS后处理疲劳功能仅仅是Fe-safe疲劳功能的一个很少部分,渭河谷地Fe-safe作为复杂环境下的疲劳耐久性计算是ANSYS疲劳的补充与延伸。
问题2:什么是高周疲劳和低周疲劳?它们与应力疲劳法和应变疲劳法之间的关系是什么?
回答2:根据疲劳断裂时交变载荷作用的总周次,疲劳可分为低周疲劳、中周疲劳和高周疲
劳。一般将断裂时的总周次在 以下时,称为低周疲劳;断裂时的总周次大于 时,称为高周疲劳。在高周疲劳中,构件在破坏之前一般仅发生极小的弹性变形,而在低周疲劳中,应力往往大到足以使每个循环产生可观的宏观的塑性变形。因此,低周疲劳较高周疲劳而言显示出了延性状态。高周疲劳传统上用应力范围来描述疲劳破坏所需的时间或循环数,即按应力疲劳法评估疲劳寿命。低周疲劳(短寿命)传统上用应变范围来描述全塑性区域疲劳破坏所需的时间或循环数,即按(局部)应变疲劳法评估疲劳寿命。
        ANSYS FE-SAFE是一款高级疲劳耐久性分析和信号处理的软件,它是多轴疲劳分析解决方案的领导者,算法先进,功能全面细致,是世界公认精度最高的疲劳分析软件。
     ANSYS FE-SAFE既支持基于疲劳试验测试应力和应变信号的疲劳分析技术,也支持基于有限元分析计算的疲劳仿真设计技术。
     ANSYS FE-SAFE具有完整的材料库、灵活多变的载荷谱定义方法、实用的疲劳信号采集与分析处理功能以及丰富先进的疲劳算法,完整的输出疲劳结果。
疲劳分析软件 ANSYS FE_SAFE 简介(转)
来源: 刘兴兴的日志
ANSYS FE_SAFE 
   
    产品投放市场后,如果在耐久性方面出现问题将会造成许多新产品失去竞争力,给企业带来巨大的经济损失,同时又使企业形象蒙受巨大的负面影响。在中国,由于疲劳耐久性与可靠性不过关造成的产品问题更是普遍存在,是国产产品缺乏国际竞争力的最重要因素之一。国际上,每年因结构疲劳的原因,大量产品在其有效寿命期内报废,由于疲劳破坏而造成的恶性事故也时有出现。据统计,欧洲每年早期断裂造成的损失达800亿欧元,而美国每年早期断裂造成的损失达1190亿美元,其中95% 是由于疲劳引起的断裂。而通过应用疲劳耐久性分析技术,其中的50%是可以避免的,因此许多企业将疲劳耐久性定为产品质量控制的重要指标。 
   
   
  在传统的设计过程中,设计人员在概念或详细设计阶段通常使用简单而不真实的计算来估计产品的寿命,而对这些估计寿命的验证通常是通过一定量物理样机的耐久试验得到,不但试验周期长、耗资巨大,而且许多相关参数与失效的定量关系也不可能在试验中得出,
试验结论还可能受许多偶然因素的影响。因此对于产品疲劳寿命的仿真分析方法越来越受到产品设计人员的关注。 
   
  ANSYS FE-SAFE是美国ANSYS公司与英国安全技术公司(SAFE TECHNOLOGY LIMITED)紧密合作的产品,是进行结构疲劳耐久性分析的专用软件。在软件开发过程中,每年投资数百万美元用于研发,并进行了大量的材料参数实验和实际结构件的试验验证。 
   
高草酸尿症   
    在产品设计阶段使用ANSYS FE-SAFE,可在物理样机制造之前进行疲劳分析和优化设计,真实地预测产品的寿命,实现等寿命周期设计。设计阶段的耐久性分析可以显著缩短产品推向市场的时间、提高产品可靠性,极大地降低制造物理样机和进行耐久性试验所带来的巨额研发费用。ANSYS FE-SAFE耐久性分析技术可广泛应用于从空间站、飞机发动机到汽车、火车;从空调、洗衣机等家电产品到电子通讯系统;从舰船到石化设备;从内燃机、核能、电站设备到通用机械等各个领域。 
  疲劳分析及概念 
  >疲劳破坏的概念 
   
  当材料或结构受到多次重复变化的载荷作用后,在应力值虽然始终没有超过材料的强度极限,甚至比弹性极限还低的情况下就可能发生破坏。这种在交变载荷持续作用下材料或结构的破坏现象,就叫做疲劳破坏。 
   
  >疲劳破坏的特征 
   
  材料力学是根据静力试验来确定材料的机械性能(比如弹性极限、屈服极限、强度极限)的,这些机械性能没有充分反映材料在交变载荷作用下的特性。因此,在交变载荷作用下工作的零件和构件,如果还是按静载荷去设计,在使用过程中往往就会发生突如其来的破坏。 
   
  >疲劳破坏与传统静力破坏的本质区别 
   
  * 静力破坏是一次最大载荷作用下的破坏;疲劳破坏是多次反复载荷作用下产生的破坏,它不是短期内发生的。 
   
  * 当静应力小于屈服极限或强度极限时,不会发生静力破坏;而交变应力在远小于静强度极限,甚至小于屈服极限的情况下,疲劳破坏就可能发生。 
   
  * 静力破坏通常有明显的塑性变形产生;疲劳破坏通常没有外在宏观的显著塑性变形迹象,即便是塑性良好的金属,其疲劳破坏形式也象脆性破坏一样,事先不易觉察出来,这表明疲劳破坏具有更大的危险性。 
   
  * 在静力破坏的断口上,通常只呈现粗粒状或纤维状特征;而在疲劳破坏的断口上,总是呈现两个区域特征,一部分是平滑的,另一部分是粗粒状或纤维状。因为疲劳破坏时,首先在某一点(通常接近构件表面)产生微小的裂纹,其起点叫"疲劳源",而裂纹从疲劳源开始,逐渐向四周扩展。由于反复变形,裂开的两个面时而挤紧,时而松开,这样反复摩
擦,形成一个平滑区域。在交变载荷继续作用下,裂纹逐渐扩展,承载面积逐渐减少,当减少到材料或构件的静强度不足时,就会在某一载荷作用下突然断裂,其断裂面呈粗粒状或纤维状。 
   
  * 静力破坏的抗力主要取决于材料本身;而疲劳破坏的抗力与材料的组成、构件的形状或尺寸、表面加工状况、使用条件以及外部工作环境都有关系。 
   
  ANSYS FE-SAFE概述 
  ANSYS FE-SAFE由用户界面、材料数据库管理系统、疲劳分析程序和信号处理程序组成。ANSYS FE-SAFE读取有限元分析计算出的单位载荷或实际工作载荷下的弹性应力,然后根据实际载荷工况和交变载荷形式将结果比例迭加以产生工作应力时间历程;也可换算成特定类型载荷作用下的弹塑性应力。 
  材料数据库管理系统 
   
  ANSYS FE-SAFE提供了一个全面的材料疲劳特性数据库和数据库管理系统,含有上百种
常用的钢、铝合金材料的疲劳数据,用户也可以根据需要扩充和修改该数据库。 
   
  用户可以查讯数据库,如列出所有的铝合金,也可以输入新材料。 
  如果有主数据库和用户本地数据库,这两个数据库都可以访问;系统管理员可以将主数据库设定为只读,以防止用户对主数据库的数据进行修改。 
  利用内置的Netscape link可以访问试验报告及背景数据,在启动疲劳分析时程序可自动访问材料数据库,读入材料数据;用户数据可通过用户界面直接输入。程序还可绘制材料数据的多种类型的曲线。 
   
  在数据库中含有Seeger材料近似算法,允许利用材料的抗拉强度(UTS)和弹性模量生成近似的材料疲劳数据,生成的数据可以指定一个数据集名并存入数据库。 
   
  用户界面 
   
  ANSYS FE-SAFE友好的用户界面下,可方便地进行疲劳耐久性分析的数据准备;所输
入的材料数据、荷载及荷载组合数据均可图示化显示,疲劳计算的结果可通过三维云图直观地显示。 
   
  ANSYS FE-SAFE对有限元数据文件中的单元数没有实际限制,在一个有限元模型中可以有多个单元组,每个单元组中的单元数不限,最多可以根据4096组有限元计算结果进行疲劳分析。 
   
  ANSYS FE-SAFE可直接读取ANSYS的分析结果文件,读入节点应力和节点温度等,从材料库中选取相应的材料,疲劳数据即自动定义完毕;对于材料库中没有的材料允许用户自己定义。寿命计算结果可用图形或动画显示,对数寿命、给定寿命下的安全系数均可以三维云图的形式直观地表示。 
   
   
  疲劳分析功能 
   
  * ANSYS FE-SAFE可定义载荷时间历程,用于处理一组有限元分析应力结果。 
   
  * ANSYS FE-SAFE能有效处理FEA分析的弹性应力结果和弹塑性应力结果,可组合多个载荷的时间历程。迭加多轴加载的时间历程,从而在模型的每个位置上都产生各个应力张量的复杂的时间历程。 
    
  * ANSYS FE-SAFE可进行序列工况的疲劳分析,数据集序列可以是一个瞬态分析的结果,也可以通过一系列离散事件来生成。如对发动机曲轴不同转角下的多个求解结果进行疲劳分析。 
   
  * ANSYS FE-SAFE可对复杂的块数据载荷进行分析,对于每个载荷条件,生成载荷的有限元结果数据集循环块。 
   
  * ANSYS FE-SAFE 可对载荷历程和序列载荷进行组合使用。 
   
  * ANSYS FE-SAFE可定义载荷文件,其中可包含一系列载荷块,每一载荷块又可定义一系列的载荷历程或序列载荷数据的组合。序列载荷数据是由于结构承受随时间变化载荷而引起的应力变化数据。 
   
  * ANSYS FE-SAFE可利用应力-寿命曲线、应变-寿命曲线,并可使用局部应力-应变法进行单轴和多轴疲劳分析。同时可以使用多种平均应力修正方法,也可采用用户定义的平均应力修正。具有很强的基于局部应力-应变技术的高级多轴疲劳分析功能,自动识别疲劳"热点";对于运动部件,可针对给定的设计寿命,给出三维安全系数云图,显示疲劳寿命的设计余量。多轴Neuber准则用来计算循环中构件产生屈服引起的弹塑性应力应变。对于应力历程中的每一 事件,利用材料记忆算法重新计算双轴条件下的循环应力-应变曲线。对多向载荷,在载荷历程上节点的主应力方向不断变化,因而临界平面的法向也在不断变化,在每个面上,剪切应变或正应变都采用雨流计数法,计算每个循环的疲劳损伤,使用Miner准则来计算节点的疲劳寿命,所有面上的最短疲劳寿命作为节点的疲劳寿命。 
   
  * 利用应力-寿命曲线进行单轴分析 GoodmanGerber平均应力修正。 
   
  ·利用应变-寿命曲线进行单轴分析 MorrowSmith-Watson-Topper平均应力修正。 
   
  ·利用局部应力-应变法进行多轴疲劳分析,可分别考虑最大剪应变(适用于延展性好的材料)、最大正应变(适用于脆性材料)、Brown-Miller组合剪应变及法向应变(适用于绝大多数金属材料)等。 
   
  ·在加载过程中当一个节点的主应力方向改变时,就使用临界平面法。对剪应变和Brown-Miller准则,使用q90°的平面和q45°的平面,每个平面以10°的间隔从f旋转到f180°扫描。对于正应变准则,使用q90°的平面,以10°的间隔从f旋转到f180°扫描。 
   
  * 定义载荷时间历程时,加载文件中的载荷条件可存储为以下格式的文件,以方便地与其它各种软件进行数据交换。准备单通道和多通道载荷历程,对载荷进行比例缩放,考虑峰/谷而忽略循环。ANSYS FE-SAFE 可处理多达4096个通道的载荷。 
   
   
  ·单通道dac格式的二进制文件; 
  ·多通道铝合金牺牲阳极amc格式的二进制文件; 
  ·单通道和多通道的组合asctxt文件; 
  ·Servotest 二进制 '.SBF'文件; 
  ·Snap-Master 二进制 '.SM'文件; 
  ·单列ASCII文件; 
  ·多列ASCII文件。 
  * ANSYS FE-SAFE中疲劳分析载荷信号处理,可采用雨流计数法。 
   
  * ANSYS FE-SAFE中疲劳测试信号可进行幅值分析和频率分析处理。过滤掉小的载荷循环。 
   
  * ANSYS FE-SAFE可根据功率谱密度数据进行振动疲劳分析,不同频率和幅值的信号可
进行叠加。 
   
  * ANSYS FE-SAFE可考虑冲压、拉延引起的残余应力对疲劳寿命的影响,能利用BS7608标准的应力-寿命数据进行焊接结构疲劳分析。 
   
  * ANSYS FE-SAFE可考虑蠕变对疲劳的影响(应力应变响应与应变率和瞬时温度相关)。 
  * 由于铸铁中石墨的影响,材料拉-压应力应变呈非对称性,ANSYS FE-SAFE提供专门手段对铸铁(包括灰口铁)进行疲劳分析。早泄宁 
   
  * ANSYS FE-SAFE可计算微振磨损疲劳寿命。 
   
  * ANSYS FE-SAFE可以快速研究高温疲劳。 
  * ANSYS/FESAFE可以考虑机加工及装配应力对结构寿命的影响。 
   
  * ANSYS FE-SAFE可以针对整个模型,也可以针对一组单元进行疲劳分析。可方便地对整个模型或者选择的区域进行再设计和假设分析,从而观察从非关键区域去掉金属材料的效果,以及增加"热点"位置的疲劳寿命。 
   
  * ANSYS FE-SAFE可考虑构件表面光洁度影响、几何外形变化与缺口敏感性影响以及材料特性变化效应和不同载荷组合历史的影响。不同的材料数据和应力集中系数可以用于每一个单元组(允许在同一个部件上有机加工面和锻造面)。 
  * ANSYS FE-SAFE可进行疲劳失效率的统计分析。 
   
  * ANSYS FE-SAFE可根据指定的设计寿命,计算出各个节点相对于设计寿命的安全系数。 
   
  * ANSYS FE-SAFE支持批处理和命令行功能。 
   
  * ANSYS FE-SAFE还提供了方便的显示功能绘制材料数据和载荷历程。 
  * ANSYS FE-SAFE可计算出在指定寿命下,模型上各部分不会破坏的可能性。 
   
  * ANSYS FE-SAFE可从模型上一系列的载荷中出对疲劳寿命影响最大的载荷及载荷方向。 
   
  * ANSYS FE-SAFE根据载荷情况和材料数据自动选择最合适的疲劳分析方法。 
   
  结果输出 
   
  * ANSYS FE-SAFE将节点的疲劳寿命写入输出文件中,如果指定设计寿命,将计算出各个节点相对设计寿命的安全系数,计算结果可以用ANSYS后处理器进行处理,可充分地利用ANSYS强大的后处理功能,如三维云图显示等。 
   
  * 生成一个文本文件,包含用户输入、分析类型、软件版本号和结果摘要。
ANSYS FE-SAFE一直是多轴疲劳分析解决方案的领导者,算法先进,功能全面细致,是
世界公认精度最高的疲劳分析软件。
ANSYS FE-SAFE既支持基于疲劳试验测试应力和应变信号的疲劳分析技术,也支持基于有限元分析计算的疲劳仿真设计技术。
ANSYS FE-SAFE具有完整的材料库、灵活多变的载荷谱定义方法、实用的疲劳信号采集与分析处理功能以及丰富先进的疲劳算法,完整的输出疲劳结果。
特功能
拥有基于应力应变测试信号的疲劳分析技术;
支持弹性、塑性,单轴、多轴的应力和局部应变全面疲劳算法;
丰富的材料疲劳数据库;
支持各种载荷输入文件格式,并对载荷信号进行分析处理;
概率疲劳计算载荷与材料服从某种概率分布时,在一定设计寿命下结构的生存概率;
可以构造复杂的疲劳载荷谱;
生成丰富的疲劳计算结果;
界面操作易学易用;
CAE接口:Ansys, Nastran, Abaqus, I-deas, Hypermesh, Pro/E Mechanical
客户价值
基于有限元分析的疲劳技术,实现了产品设计-CAE仿真-疲劳设计-重设计的现代设计研发流程,使疲劳设计更加高效快速和经济实用;
十二烷基硫酸钠
自带信号分析处理技术使信号去假存真,并进一步提取信号的幅频特性、提取峰值序列、雨流矩阵、PSD等,可以直接用于疲劳分析;
材料库提供了丰富的材料,每种材料都有缺省疲劳算法自动用于疲劳计算,便于本地化和用户化,内置Netscape link访问国际国内发布的各种疲劳测试报告和相关数据;
ANSYS作为世界先进的CAE分析程序,其强大的结构--流体-电磁耦合场分析能力,为Fe-safe提供多种单场或耦合场载荷工况的FEA结果,确保疲劳计算代表真实工程载荷工况;
疲劳算法能同时考虑各种疲劳影响因素,多轴疲劳算法全球领先,速度快精度高。
附加模块
  旋转机械疲劳分析模块, Fe-safe/Rotate™
利用了结构的轴对称性,提高了旋转部件的疲劳分析效率,可以自动产生一系列不同旋转角度上的应力结果,一次静力计算可以用来定义一个循环的疲劳载荷谱。有限元计算结果文件更小,求解规模降低。如果旋转角度增量小于模型对称角,则需要额外的有限元求解。该模块支持完整模型、一半模型和奇、偶对称的扇区模型。
  -机械疲劳分析模块,Fe-safe/TMF™
考虑浮动温度和应力对结构的共同影响,提供快速精确的疲劳寿命分析。可以考虑应变率和瞬态温度对循环应力-应变响应的影响,也可以考虑瞬态温度对应变-寿命曲线的影响,以及考虑在每个循环中的应力和温度的相位关系的影响,支持体积应力放宽,该模块还可以计算应变老化对疲劳强度的影响。
典型应用
  航空部件疲劳分析
  汽车部件(方向盘、转向架、转向节、制动盘等)的多轴疲劳分析
  汽车油盘残余应力下的疲劳寿命
  整车路谱疲劳分析
二连浩特发生一起中毒事故致4死
  内燃机活塞高温蠕变疲劳,活塞裂纹分析
  发动机曲轴疲劳分析
  装配件连接处的焊接疲劳分析
  压力容器大型油罐风载疲劳分析
  船舶发动机机座疲劳分析
  结构随机振动疲劳分析

本文发布于:2024-09-23 04:26:15,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/41282.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:分析   载荷   应力   材料   寿命   进行
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议