IGBT的动态特性与静态特性的研究

IGBT的动态特性与静态特性的研究
IGBT动态参数
IGBT模块动态参数是评估IGBT模块开关性能如开关频率、开关损耗、死区时间、驱动功率等的重要依据,本文重点讨论以下动态参数:模块内部栅极电阻、外部栅极电阻、外部栅极电容、IGBT寄生电容参数、栅极充电电荷、IGBT开关时间参数,结合IGBT模块静态参数可全面评估IGBT芯片的性能。
RGint:模块内部栅极电阻:
为了实现模块内部芯片均流,模块内部集成有栅极电阻。该电阻值应该被当成总的栅极电阻的一部分来计算IGBT驱动器的峰值电流能力。
RGext:外部栅极电阻
外部栅极电阻由用户设置,电阻值会影响IGBT的开关性能。
上图中开关测试条件中的栅极电阻为Rgext的最小推荐值。
用户可通过加装一个退耦合二极管设置不同的Rgon和Rgoff。
已知栅极电阻和驱动电压条件下,IGBT驱动理论峰值电流可由下式计算得到,其中栅极电阻值为内部及外部之和。
实际上,受限于驱动线路杂散电感及实际栅极驱动电路非理想开关特性,计算出的峰值电流无法达到。
如果驱动器的驱动能力不够,IGBT的开关性能将会受到严重的影响。
最小的Rgon由开通di/dt限制,最小的Rgoff由关断dv/dt限制,栅极电阻太小容易导致震荡甚至造成IGBT及二极管的损坏。
Cge:外部栅极电容:
高压IGBT一般推荐外置Cge以降低栅极导通速度,开通的di/dt及dv/dt被减小,有利于降低受di/dt影响的开通损耗。
IGBT寄生电容参数模型仿真
IGBT寄生电容是其芯片的内部结构固有的特性,芯片结构及简单的原理图如下图所示。输入电容Cies及反馈电容Cres是衡量栅极驱动电路的根本要素,输出电容Coss限制开关转换过程的dv/dt,Coss造成的损耗一般可以被忽略。
其中:
谭碧生Cies = CGE + CGC:输入电容(输出短路)
Coss = CGC + CEC:输出电容(输入短路)
Cres = CGC:反馈电容(米勒电容)
动态电容随着集电极与发射极电压的增加而减小,如下图所示。
手册里面的寄生电容值是在25V栅极电压测得,CGE的值随着VCE的变化近似为常量。CCG的值强烈依赖于VCE的值,并可由下式估算出:
IGBT所需栅极驱动功率可由下式获得:
或者
QG:栅极充电电荷:

栅极充电电荷可被用来优化栅极驱动电路设计,驱动电路必须传递的平均输出功率可通过栅极电荷、驱动电压及驱动频率获得,如下式:
其中的QG为设计中实际有效的栅极电荷,依赖于驱动器输出电压摆幅,可通过栅极
IGBT开关时间参数电荷曲线进行较精确的近似。
通过选择对应的栅极驱动输出电压的栅极电荷,实际应该考虑的QG’可以从上图中获取。工业应用设计中,典型的关断栅极电压常被设置为0V或者-8V,可由下式近似计算:儿童虚拟社区
例如,IGBT的栅极电荷参数如上表,实际驱动电压为+15/-8V,则所需的驱动功率为:
IGBT开关时间参数:
开通延迟时间td(on):开通时,从栅极电压的10%开始到集电极电流上升至最终的10%为止,这一段时间被定义为开通延迟时间。
开通上升时间tr:开通时,从集电极电流上升至最终值的10%开始到集电极电流上升至最终值的90%为止,这一段时间被定义为开通上升时间。
关断延迟时间td(off):关断时,从栅极电压下降至其开通值的90%开始到集电极电流下降
到开通值的90%为止,这一段时间被定义为关断延迟时间。
关断下降时间tf:关断时,集电极电流由开通值的90%下降到10%之间的时间。
开关时间的定义由下图所示:
因为电压的上升下降时间及拖尾电流没有制定,上述开关时间参数无法给出足够的信息用来获取开关损耗。因而,单个脉冲的能量损耗被单独给出,单个脉冲开关损耗可由下列积分公式获得:
单个脉冲的开关时间及能量参数强烈地依赖于一系列具体应用条件,如栅极驱动电路、电路布局、栅极电阻、母线电压电流及结温。因而,手册里的值只能作为IGBT开关性能的参考,需要通过详细的仿真和实验获得较为精确的值。
针对半桥拓扑电路,可根据手册里的开关时间参数,设置互补的两个器件在开通及关断时的死区时间。
IGBT静态参数
VCES:集电极-发射极阻断电压
在可使用的结温范围内栅极-发射极短路状态下,允许的断态集电极-发射极最高电压。手册里VCES是规定在25°C结温条件下,随着结温的降低VCES也会有所降低。降低幅度与温度变化的关系可由下式近似描述: .模块及芯片级的VCES对应安全工作区由下图所示:
Collector-emitter voltage of the IGBT
川端康成
由于模块内部杂散电感,模块主端子与辅助端子的电压差值为 ,由于内部及外部杂散电感,VCES在IGBT关断的时候最容易被超过。VCES在任何条件下都不允许超出,否则IGBT就有可能被击穿。
Ptot:最大允许功耗
在Tc=25°C条件下,每个IGBT开关的最大允许功率损耗,及通过结到壳的热阻所允许的最大耗散功率。Ptot可由下面公式获得: 
Maximum rating for Ptot
二极管所允许的最大功耗可由相同的方法计算获得。
IC nom:集电极直流电流国际市场占有率
在可使用的结温范围内流过集电极-发射极的最大直流电流。根据最大耗散功率的定义,可以由Ptot的公式计算最大允许集电极电流。因而为了给出一个模块的额定电流,必须指定对应的结和外壳的温度,如下图所示。请注意,没有规定温度条件下的额定电流是没有意义的。
Specified as data code: FF450R17ME3
在上式中Ic及VCEsat @ Ic都是未知量,不过可以在一些迭代中获得。考虑到器件的容差,为了计算集电极额定直流电流,可以用VCEsat的最大值计算。
计算结果一般会高于手册值,所有该参数的值均为整数。该参数仅仅代表IGBT的直流行为,可作为选择IGBT的参考,但不能作为一个衡量标准。
ICRM:可重复的集电极峰值电流
最大允许的集电极峰值电流(Tj≤150°C),IGBT在短时间内可以超过额定电流。手册里定义为规定的脉冲条件下可重复集电极峰值电流,如下图所示。理论上,如果定义了过电流持续时间,该值可由允许耗散功耗及瞬时热阻Zth计算获得。然而这个理论值并没有考虑到绑定线、母排、电气连接器的限制。因此,数据手册的值相比较理论计算值很低,但是,它是综合考虑功率模块的实际限制规定的安全工作区。
RBSOA:反偏安全工作区
该参数描述了功率模块的IGBT在关断时的安全工作条件。如果工作期间允许的最大结温不被超过,IGBT芯片在规定的阻断电压下可驱使两倍的额定电流。由于模块内部杂散电感,模块安全工作区被限定,如下图所示。随着交换电流的增加,允许的集电极-发射极电压需
要降额。此外,电压的降额很大程度上依赖于系统的相关参数,诸如DC-Link的杂散电感以及开关转换过程换流速度。对于该安全工作区,假定采用理想的DC-Link电容器,换流速度为规定的栅极电阻及栅极驱动电压条件下获得。
Reverse bias safe operating area
Isc:短路电流
短路电流为典型值,在应用中,短路时间不能超过10uS。IGBT的短路特性是在最大允许
运行结温下测得。
VCEsat:集电极-发射极饱和电压
规定条件下,流过指定的集电极电流时集电极与发射极电压的饱和值(IGBT在导通状态下的电压降)。
手册的VCEsat值是在额定电流条件下获得,给出了Tj在25oC及125oC的值。Infineon的IGBT都具有正温度效应,适宜于并联。手册的VCEsat值完全为芯片级,不包含导线电阻。
王亚忱
VCEsat随着集电极电流的增加而增加,随着Vge增加而减少。Vge不推荐使用太小的值,会增加IGBT的导通及开关损耗。
VCEsat可用来计算IGBT的导通损耗,如下式描述,切线的点应尽量靠近工作点。
对于SPWM控制方式,导通损耗可由下式获得:

本文发布于:2024-09-22 18:31:54,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/411409.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:栅极   驱动   电压   集电极   电流   参数
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议