光合作用起源

光合作用研究历程及进展
摘要:本文通过对光合作用的发现历程以及现今的进展成果进行探索,来增强对光合作用的历史及作用的理解
关键字:光合作用、历史、进展、成果
正文:
大部分植物都植根于土中 ,一旦拔出,便会死亡。早在两千多年前,人们受古希腊著名哲学家亚里土多德的影响,认为植物体是由"土壤汁"构成的,即植物生长发育所需的物质完全来自土壤。
蛋白质晶体
然而,1648年比利时医生海尔蒙特通过种植柳树的实验,却有奇特的发现。种植前,海尔蒙特先将柳树和土壤各自称重,五年后他再次称量。结果发现:五年内柳树增加了75千克,而土壤只减少了57克。很明显,植物生长过程中利用了土壤之外的物质来供应生长所需。海尔蒙特认为柳树的增重来自于他浇的水,但他忽视了植物生长也需要其它物质。在长期和有效的植物营养的研究中,这也是定量实验的第一次尝试。
早在1637年,我国明代科学家宋应星在《论气》一文中,已注意到空气和植物的关系,提出"人所食物皆为气所化,故复于气耳"。可惜因受当时科学技术水平的限制,未能用实验来证明这一精辟的论断。
直到1727年,英国植物学家斯蒂芬·黑尔斯才提出植物生长时主要以空气为营养的观点。而最先用实验方法证明绿植物从空气中吸收养分的是英国著名的化学家约瑟夫·普利斯特利。
1771年,英国的普里斯特利(J.Priestley,1733-1804)发现植物可以恢复因蜡烛燃烧而变“坏”了的空气。他做了一个有名的实验,他把一支点燃的蜡烛和一只小白鼠分别放到密闭的玻璃罩里,蜡烛不久就熄灭了,小白鼠很快也死了。接着,他把一盆植物和一支点燃的蜡烛一同放到一个密闭的玻璃罩里,他发现植物能够长时间地活着,蜡烛也没有熄灭。他又把一盆植物和一只小白鼠一同放到一个密闭的玻璃罩里。他发现植物和小白鼠都能够正常地活着,于是,他得出了结论:植物能够更新由于蜡烛燃烧或动物呼吸而变得污浊了的空气。但他并没有发现光的重要性。由于他的杰出贡献和实验完成于1771年,因此,现在把这一年定为发现光合作用的年份。
随后有人重复普利斯特利的实验,但却得出与他相反的结论,认为植物不仅不能把空气变好,反而会把空气变坏(这是由于植物同样有呼吸作用的缘故)。这种截然不同的结论引起人们的极大关注,导致了1779年,荷兰的植物生理学家英根豪斯到了普利斯特莱实验有时失败的原因。他发现密封大玻璃罩中的植物需要在有光照射时才可以放出氧气,如果普利斯特莱进行上述实验时没有给密封大玻璃罩中的植物提供足够的光照,实验就不可能成功。,他的实验证实了普利斯特利的实验结果,确认植物对污浊的空气有"解毒"能力,同时指出这种能力不是由于植物生长缓慢所致,而是太阳光照射植物的结果,从而证明绿植物只有在光下,才能把空气变好。同时他发现植物有很强的释放气体的能力(这就是后来人们知道的植物在光下进行光合作用时放出氧气的结果),而且这种能力的活性与天气的晴朗程度尤其与植物受光照的强度成正相关。他还证明植物在暗中不仅不能"净化"空气,反而会像动物一样把好空气变坏(这是后来知道的在暗中植物呼吸会释放出二氧化碳的缘故)。 他通过进一步实验发现,只有叶片和绿的枝条在阳光下才有改善空气的作用,而其他所有器官即使在白天也会使空气变坏。这些实验结果为后来人们认识植物绿部分和光在植物光合作用中的重要性奠定了基础。
1782年瑞士的J. Senebier用化学分析的方法指出植物"净化"空气的活性,除与光照密切相
关外,还取决于所"固定的空气"(即后来知道的二氧化碳)。但是由于受当时气体化学发展水平的限制,对植物在光下和暗中所释放的气体究竟分别属于何种气体仍然不清楚。
直到1785年,在弄清空气的组成成分后,人们才明确认识到植物的绿部分在光下释放出的气体为氧气,而植物各器官(包括绿部分)在呼吸过程释放的气体是二氧化碳。到此时,人们对植物光合作用与气体间的关系才有较深刻的认识。
1804年N.T.De Saussure研究了植物光合作用过程中吸收的二氧化碳与放出的氧之间的数量关系,结果发现植物制造的有机物和释放出的氧的总量,远远超过它们所吸收的二氧化碳的量。由于实验中只使用植物、空气和水,别无他物,因此,他断定植物在进行光合作用合成有机物时不仅需要二氧化碳,水也必然是光合作用的原料。此结论不仅证实了海尔蒙脱关于柳树生长过程中合成植物体的物质主要来自水的推论,而且把人们对光合作用本质的认识提高到一个崭新的阶段。 文汇报姜维平
1845年,德国科学家梅耶(R.Mayer) 根据能量转化与守恒定律明确指出,植物在进行光合作用时,把光能转换成化学能储存起来。
光棍儿电影下载
1864年,德国的萨克斯发现光合作用产生淀粉。他做了一个试验:把绿植物叶片放在暗处几个小时,目的是让叶片中的营养物质消耗掉,然后把这个叶片一半曝光,一半遮光。过一段时间后,用碘蒸汽处理发现遮光的部分没有发生颜的变化,曝光的那一半叶片则呈深蓝。这一实验成功的证明绿叶片在光和作用中产生淀粉。此时人们对植物在光合作用过程中吸收二氧化碳,释放出氧气并把二氧化碳和水合成有机物已确信无疑了。因此,最终确定了至今人们还在沿用的光合作用总反应式。然而,当时对于氧气是从绿部分的什么部位释放出来的尚不清楚。
1880年,美国的恩格尔曼发现叶绿体是进行光合作用的场所,氧是由叶绿体释放出来的。他把载有水绵(水绵是多细胞低等绿植物,其细而长的带状叶绿体是螺旋盘绕在细胞内)和好氧细菌的临时装片放在没有空气的暗环境里,然后用极细光束照射水绵通过显微镜观察发现,好氧细菌向叶绿体被光照的部位集中:如果上述临时装片完全暴露在光下,好氧细菌则分布在叶绿体所有受光部位的周围。恩格尔曼的实验证明了氧气是从中叶绿体释放出来的;叶绿体是绿植物进行光合作用的场所。
1897年,首次在教科书中被称为光合作用。
1905年英国植物学家F.F.布莱克曼提出光合作用包括需要光照的"光反应"和不需光照的"暗反应"两个过程,二者相互依赖,光反应时吸收的能量,供给暗反应时合成含高能量的多糖等的需要。20年代,O.瓦尔堡进一步提出在光反应中不是温度而是光的强度起作用。1929~1931年荷兰微生物学家C.B.范尼尔通过比较生化研究,发现光合硫细菌与绿植物一样,也进行光合作用。只是绿植物的供氢体是水,而光合硫细菌的供氢体是硫化氢或其他还原性有机物。C.B.范尼尔的工作改变了长期以来认为光合作用一定要放氧的看法,扩大了光合作用的概念,对以后有深远影响。对于光合作用的重要参与物质叶绿素,早就引起人们的注意。德国化学家R.M.维尔施泰特经过了8年的努力,于1913年阐明了叶绿素的化学组成。另一位德国化学家H.菲舍尔于1940年确定了它的结构,这些都为50年代"光合作用中心"的提出,以及素吸收光子、能量传入作用中心等的发现奠定了基础。虽然光合作用的部位早就被认为是叶绿体,但真正用实验加以证实则在20世纪30年代末40年代初。英国植物生理学家R.希尔用离体叶绿体作实验,测到放氧反应,这是绿植物进行光合作用的标志。但是否代表光合作用未能肯定。 希尔称它为叶绿体的放氧作用,亦被称为"希氏反应"。这一工作直到1951年才被证实是光合作用的一部分。1954~1955年,美国生物化学家D.I.阿尔农美国微生物学家M.B.艾伦又证明离体叶绿体不仅能放氧,而且也能同化二氧化碳。这也就证实了叶绿体确是光合作用的部位。
20世纪40年代,美国科学家卡尔文(M.Calvin)用小球藻做实验:用14C标记的CO2(其中碳为14C)供小球藻(一种单细胞的绿藻)进行光合作用,然后追踪检测其放射性,最终探明了二氧化碳中的碳在光合作用中转化成有机物中碳的途径,这一途径被成为卡尔文循环。
21世纪初,合成生物学的兴起,人工设计与合成生物代谢反应链成为改造生物的转基因系统生物技术,2003年美国贝克利大学成立合成生物学系,开展光合作用的生物工程技术开发,同时美国私立文特尔研究所展开藻类合成生物学的生物能源技术开发,将使光合作用技术开发在太阳能产业领域带来一场变革。
进入80年代,光合反应中心的结构研究取得了重要突破,1982年西德生化学家H.米舍尔成功地分离提取出生物膜上的素复合体,即光合反应中心。以后德国的蛋白质晶体结构分析专家R.休伯和J.戴维森,经过4年的努力,用X射线衍射分析的方法,测定出这个复合体的复杂的蛋白质结构。这一成果在光合作用研究上是一个飞跃,有力地促进了太阳光能转变为植物能的瞬间变化原理的研究。
发展至今,又出现了一些新的研究成果:
汪毅夫
   1.2003年12月,以科学家破解产生光合作用的蛋白质分子结构:植物体中有两种非常重要的蛋白质,在它们的共同作用下,植物通过光合作用可制造出人类赖以生存的食物和氧气。以列特拉维夫大学的科学家最近成功地破译出其中一种蛋白质的分子结构。他们的这一研究成果发表在最新一期的《自然》杂志上。
  光合作用是将太阳能转化成化学能的过程,整个过程有两种反应同时进行,分别是光系统I和光系统II。光系统I蛋白质分子负责利用光能把二氧化碳转变成碳和氧气,光系统II蛋白质分子则利用光能把水分解为氢和氧。由这两种蛋白质驱动的含氧光合作用是地球上氧气和绿有机质的主要生产者,所以光系统I是一种极为重要的分子。
pc133  特拉维夫大学生化系的研究人员在分子生物学系专家的帮助下,通过对高等植物光系统I的晶体结构进行观察和分析发现,在其复杂的结构中,含有12个亚单元;4个不同的光接收膜蛋白(LHCI)呈半月形围绕在中心的一侧;还有45个跨膜螺旋,以及167个叶绿素,3个铁-硫(3Fe-S)簇和2个叶绿醌。大约有20个叶绿素位于LHCI和中心之间。这一结构不仅提供了能量和电子传递的机制,而且为10亿多年前,叶绿体从海洋藻青菌发展到陆地植物后,形成陆地植物光合作用机能提供了进化动力。
  叶绿体是植物绿细胞中极其微小的有机体,通常被认为是从共生细菌中发展出来的。10亿多年前,当空气中只有很少量的氧时,这种共生细菌就进入了细胞体中。他们先发展成藻类,然后再进入干燥的绿植物。这种原始的单细胞植物一直存活到今天,已经被用于研究令人惊异的光合作用过程。
  过去许多专家都希望能够从叶绿体光系统中分离出这两种蛋白质,以便观察它们与原始体系的区别,但都没有成功。以列的专家花费5年时间,从豌豆的叶子中提炼和分离出光系统I,最终破解出这种复杂的晶体结构。
    2.人民日报北京2004年3月20日报道:我国光合作用膜蛋白研究产生重大成果。3月18日,国际权威科学杂志《自然》以文章的形式发表了由我国科学家完成的"菠菜主要捕光复合物(LHC-Ⅱ)晶体结构"研究成果,并将晶体结构图选作封面图案。3月20日,项目主要负责人在京发布了这一成果。光合作用是自然界最重要的化学反应,光合作用机理是国际上长盛不衰的研究热点。科学家认为,光合作用由捕光系统和光反应系统共同完成,捕光复合物这种膜蛋白的三维结构是研究植物如何高效利用光能的结构基础。但要深入理解这种膜蛋白的重要功能,还有赖于高分辨率膜蛋白三维结构的解析。LHC-Ⅱ是绿植物中含量
最丰富的主要捕光复合物,它是由蛋白质分子、叶绿素分子、类胡萝卜素分子和脂类分子组成的一个复杂分子体系,被镶嵌在生物膜中,具有很强的疏水性,难以分离和结晶。测定这种膜蛋白复合体的晶体结构,是国际公认的高难课题,也是衡量一个国家结构生物学研究水平的重要标志。
  最近,我国科学家成功地超越德国和日本等发达国家的多家实验室,率先完成了这一具有高度挑战性的国际前沿课题。经过6年努力,中科院生物物理研究所常文瑞研究员主持的研究小组完成了LHC-Ⅱ三维结构的测定工作,植物研究所匡廷云院士主持的研究小组分离纯化了这一重要的光合膜蛋白,为晶体和空间结构的解析打下了物质基础。这是生物化学、结晶学及结构生物学多学科交叉、科研人员精诚团结所取得的重大成果。这一原创性成果推动我国光合作用机理与膜蛋白三维结构研究进入了国际领先行列。

本文发布于:2024-09-21 18:47:32,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/404923.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:植物   光合作用   研究   发现   实验   结构   空气   进行
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议