欧拉函数

欧拉函数 百科名片
在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为Euler's totient function、φ函数、欧拉商数等。 例如φ(8)=4,因为1,3,5,7均和8互质。 从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定理的证明。
目录[隐藏]
简介
证明
欧拉函数的编程实现首都电子商城
证明
[编辑本段]简介
  φ函数的值   通式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数就是1本身)。   若n是质数p的k次幂,φ(n)=p^k-
p^(k-1)=(p-1)p^(k-1),因为除了p的倍数外,其他数都跟n互质。   欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)。   特殊性质:当n为奇数时,φ(2n)=φ(n), 证明于上述类似。
[编辑本段]证明
  设A, B, C是跟m, n, mn互质的数的集,据中国剩余定理,A*B和C可建立一一对应的关系。因此φ(n)的值使用算术基本定理便知,   若   n= ∏p^(α(下标p))   p|n   则φ(n)=∏(p-1)p^(α(下标p)-1)=n∏(1-1/p)   p|n p|n   例如φ(72)=φ(2^3×3^2)=(2-1)2^(3-1)×(3-1)3^(2-1)=24   与欧拉定理、费马小定理的关系   对任何两个互质的正整数a, m, m>=2有   a^φ(m)≡1(mod m)   即欧拉定理   当m是质数p时,此式则为:   a^(p-1)≡1(mod m)   即费马小定理。
[编辑本段]欧拉函数的编程实现
  利用欧拉函数和它本身不同质因数的关系,用筛法计算出某个范围内所有数的欧拉函数值。   欧拉函数和它本身不同质因数的关系:欧拉函数ψ(N)=N{∏p|N}(1-1/p)。(P是数N的质因数)   如:   ψ(10)=10×(1-1/2)×(1-1/5)=4;   ψ(30)=30×(1-1/2)×(1-1/3)×(1-1/5)=8;   ψ(49)=49×(1-1/7)=42。 
 #include <stdlib.h> 
 #define N 10000000 
 main() 
 { 
 int *phi,i,j;
  char *prime; 
 prime=(char*)malloc((N+1)*sizeof(char));
  prime[0]=prime[1]=0;
  for(i=2;i<=N;i++) 
 {   
prime[i]=1; 
 }   
for(i=2;i*i<=N;i++) 
 {   
争端解决
if(prime[i]) 
磁流体推进
 {   
for(j=i*i;j<=N;j+=i) 
 {   
prime[j]=0; 
 } 
 }   寻中国最美七仙女
} //这段求出了N内的所有素数 
 phi=(int*)malloc((N+1)*sizeof(int));
  for(i=1;i<=N;i++) 
 {   
phi[i]=i;
  } 
 for(i=2;i<=N;i++) 
 {   
if(prime[i]) 
 {   
现代教育管理for(j=i;j<=N;j+=i)
  { 
 phi[j]=phi[j]/i*(i-1); //此处注意先/i再*(i-1),否则范围较大时会溢出
谢赫  } 
 }   
//这段求出
了N内所有数的欧拉函数值   2-100欧拉函数表   n φ(n)   2 1   3 2   4 2   5 4   6 2   7 6   8 4   9 6   10 4   11 10   12 4   13 12   14 6   15 8   16 8   17 16   18 6   19 18   20 8   21 12   22 10   23 22   24 8   25 20   26 12   27 18   28 12   29 28   30 8   31 30   32 16   33 20   34 16   35 24   36 12   37 36   38 18   39 24   40 16   41 40   42 12   43 42   44 20   45 24   46 22   47 46   48 16   49 42   50 20   51 32   52 24   53 52   54 18   55 40   56 24   57 36   58 28   59 58   60 16   61 60   62 30   63 36   64 32   65 48   66 20   67 66   68 32   69 44   70 24   71 70   72 24   73 72   74 36   75 40   76 36   77 60   78 24   79 78   80 32   81 54   82 40   83 82   84 24   85 64   86 42   87 56   88 40   89 88   90 24   91 72   92 44   93 60   94 46   95 72   96 32   97 96   98 42   99 60   100 40
[编辑本段]证明
  设A, B, C是跟m, n, mn互质的数的集,据中国剩余定理,A*B和C可建立一一对应的关系。因此φ(n)的值使用算术基本定理便知,   若   n= ∏p^(α(下标p))   p|n   则φ(n)=∏(p-1)p^(α(下标p)-1)=n∏(1-1/p)   p|n p|n   例如φ(72)=φ(2^3×3^2)=(2-1)2^(3-1)×(3-1)3^(2-1)=24   与欧拉定理、费马小定理的关系   对任何两个互质的正整数a, m, m>=2有   a^φ(m)≡1(mod m)   即欧拉定理   当m是质数p时,此式则为:   a^(p-1)≡1(mod m)   即费马小定理。

本文发布于:2024-09-21 03:14:23,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/399816.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:欧拉   函数   定理   关系   范围   证明
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议