黎曼几何学

德国数学家(G.F.)B.黎曼19世纪中期所提出的几何学理论。1854,他在格丁根大学发表的就职演说,题目是《论作为几何学基础的假设》,可以说是黎曼几何学的发凡。从数学上讲,发展了空间的概念,首先认识到几何学中所研究的对象是一种"多重广延量",其中的点可以用n个实数作为坐标来描述,即现代的微分流形的原始形式,为用抽象空间描述自然现象打下了基础。更进一步,他认为,通常所说的几何学只是在当时已知测量范围之内的几何学,如果超出了这个范围,或者是到更细层次的范围里面,空间是否还是欧几里得的则是一个需要验证的问题,需要靠物理学发展的结果来决定。他认为这种空间(也就是流形)上的几何学应该是基于无限邻近点之间的距离。在无限小的意义下,这种距离仍然满足勾股定理。这样,他就提出了黎曼度量的概念。这个思想发源于C.F.高斯。但是黎曼提出了更一般化的观点。在欧几里得几何中, 邻近点的距离平方是(在笛卡儿坐标下),这确定了欧几里得几何。但是在一般曲线坐标下,则应为,这里是相当特殊的一组函数。如果 是一般的函数,又(gij)仍构成正定对称阵,那么从出发,也可以定义一种几何学,这便是黎曼几何学。由于在每一点的周围,都可以选取坐标使得在这点成立 ,所以在非常小的区域里面勾股定理近似成立。但在大一点的范围里一般就和欧几里得几何学有很大的区别了。
  黎曼认识到距离只是加到流形上的一个结构,因此在同一流形上可以有众多的黎曼度量,从而摆脱了经典微分几何曲面论中局限于诱导度量的束缚。这是一个杰出的贡献。
  其后,E.B.克里斯托费尔、G.里奇等人又进一步发展了黎曼几何,特别是里奇发展了张量分析的方法,这在广义相对论中起了基本的作用。1915A.爱因斯坦创立了广义相对论,使黎曼几何在物理中发挥了重大的作用,对黎曼几何的发展产生了巨大的影响。广义相对论真正地用到了黎曼几何学,但其度量形式不是正定的,现称为洛伦茨流形的几何学(见广义相对论)。
  广义相对论产生以来,黎曼几何获得了蓬勃的发展,特别是É.嘉当在20世纪2030年代开创并发展了外微分形式与活动标架法,建立起李与黎曼几何之间的联系,从而为黎曼几何的发展奠定了重要基础且开辟了广阔的园地,影响极为深远,由此还发展了线性联络及纤维丛方面的研究。半个多世纪以来,黎曼几何的研究也已从局部发展到整体,产生了许多深刻的并在其他数学分支和现代物理学中有重要作用的结果。随着60年代大范围分析的发展,黎曼几何和偏微分方程(特别是微分算子的理论)、多复变函数论、代数拓扑学等学科互相渗透、互相影响。在现代物理中的规范场理论(又称杨-米尔斯理论)中,黎曼几何也成了一个有力的工具。
  黎曼流形  黎曼几何是黎曼流形上的几何学。黎曼流形指的是一个n维微分流形M,在其上给定了一个黎曼度量g,也就是说,在微分流形M的每一个坐标邻域(U,x)内,用一个正定对称的二次微分形式来度量二个无限邻近的点(x建设部干部学院1,x2,,xn)(x1+dx1x2+dx2,…,xn+dxn)之间的距离。这里(gij)构成一个正定对称的n×n,并假设gij(x)关于(xi)有一定的可微性,M上连接两点PQ的曲线C:xi=xi(t),αtb的长度l(C)就用积分来计算。为了保证距离的度量与坐标邻域的选取无关,还要求gij满足二阶协变张量的变换规律,用整体黎曼几何的语言来说,就是在微分流形M上给定了一个由分量gij决定的正定对称二阶协变张量场gM连同g,(M,g)称为一个n维黎曼流形,g称为度量张量或基本张量。由于历史的原因,黎曼流形又常称黎曼空间,但后者偏重于局部意义,即常指黎曼流形的一个开子集或一个坐标邻域。
  度量张量g在流形M每点P(x1恺撒大帝4,x2,,xn)的切空间Tp(M)中就规定了一个内积gp(或记为:,)用来计算切向量的长度、交角。即若向量XYTp(M),,,X 的长度XY的交角 θ
,0θπ决定。如果cosθ质量管理体系的意义0,即,就称XY 为互相正交。│尣│=1的向量称为单位向量,Tp(M)中由两两互相正交的单位向量组成的基称为正规正交基,对任一点www.ddd13PM,在P点的某一邻域核酸分子杂交U 内总存在n个单位向量场e1,e2,,en,使得在U的每点它们构成切空间的一个正规正交基,这n个局部向量场称为一个局部正规正交基或局部正规正交标架。运用局部正规正交标架来研究黎曼几何的方法称为活动标架法。黎曼几何中的许多公式和几何量在活动标架下有特别简单明了的表达式,例如取ω1ω2,…,ωn为局部正规正交标架e1e2,…,en的对偶形式,也称对偶基,即满足n个一次微分形式,于是在基{ei}下,由于,度量形式可写为
  任一仿紧微分流形总具有黎曼度量,这种黎曼度量的数目是非常繁多的,但也不是完全任意的。微分流形的度量结构是受它的拓扑结构所制约的,而这种制约关系正是黎曼几何研究的一个重要内容,还存在许多没有解决的问题。
  有了计算曲线长度的方法,黎曼流形(M,g)上任意两点PQ之间的距离d(P,Q)就可以用房东蒋先生M中连接PQ 的所有分段可微分曲线的长度的下确界来定义,即

本文发布于:2024-09-23 02:18:53,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/37178.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:度量   发展   微分   局部   坐标   空间   流形   标架
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议