硕士学位论文-磷酸铁形貌特征对磷酸铁锂电化学性能的影响

xx大学
全日制硕士专业学位论文
磷酸铁形貌特征对磷酸铁锂电化学性能的影响

磷酸铁形貌特征对磷酸铁锂电化学性能的影响
摘  要拓跋力微
锂离子电池是第三代可充二次电池,因具有工作电压高、比容量较高、循环寿命长、对环境污染小等特点,近年来成为化学电源领域的研究热点,具有广阔的应用前景。相对于Ni-Cd、Ni-MH及铅酸电池这类传统的二次电池来说,锂离子电池具有不可比拟的优点。
但目前锂离子电池还存在成本过高、安全性较差、功率密度低等不足,这些都限制了锂离子电池尤其是动力锂离子电池的广泛应用。其中起着决定性作用的是正极材料,它不仅影响着锂离子电池的成本,而且还决定了电池的总体性能。因此,对正极材料的研究是其中的关键。
传统的锂离子电池正极材料在价格、安全、循环性能等方面存在着缺陷,例如钴酸锂安全性能差、价格昂贵且有毒,镍酸锂制备困难、安全性差,锰酸锂循环稳定性差、容量衰减快橄榄石型结构的磷酸铁锂(LiFePO4)以原料来源广泛、比容量高、价格低廉、对环境污染小、循环稳定性好、安全性高等优点gsr受到全球学术界和产业界的极大关注
传统的高温固相法制备LiFePO4正极材料的铁源一般为二价铁,如草酸亚铁、乙酸亚铁等,但考虑到二价铁源成本较高,且合成过程中容易氧化,而且在工业生产中,用二价铁源合成LiFePO4时,会产生大量的CO2气体,不仅污染空气,还会对生产设备造成腐蚀,因此,近年来的研究逐渐转向成本低廉且不易氧化的三价铁源,如磷酸铁、氧化铁(Fe2O3)等。
几年磷酸铁为原料的碳热还原法制备磷酸铁锂工艺得到了广泛的应用。碳热还原法是用含三价铁的试剂作为铁源,将作为还原剂和导电剂的过量的碳源加入反应物与之充分混合,在高温下将三价铁还原为二价铁,制备得到产物。磷酸铁路线的主要优点是工艺过程简单容易控制,可以通过对原材料的有效控制来有效提高产品的批次稳定性。此法可应用于大规模生产中,是一种实用的技术路线。
在用磷酸铁为原料制备磷酸铁锂的过程中,磷酸铁的结构及形貌对磷酸铁锂产品的性能有很大的影响,不同的磷酸铁原料合成出的磷酸铁锂电化学性能相差非常大。
本研究以磷酸铁为主要研究对象,通过改变原料、制备方法及合成条件来制备形貌、粒径及结构可控的磷酸铁,最后用碳热还原法以自制的磷酸铁为前驱体合成磷酸铁锂正极材料,出磷酸铁合成的各种条件对制备的磷酸铁锂电化学性能的影响规律,确定最佳的磷酸铁合成工艺。
本文分别采用沉淀法和水热合成法合成磷酸铁,再用合成的磷酸铁制备磷酸铁锂,通过对磷酸铁和磷酸铁锂材料的测试,得到以下结论:
(1) 当以沉淀法合成磷酸铁时,合成的磷酸铁含有2分子的水,即合成的磷酸铁产物为FePO4·2H2O,而且磷酸铁产物具有较高的纯度,颗粒是由几十至数百纳米的一次颗粒团聚而成的,形貌不规则。制备出的磷酸铁锂是橄榄石结构的磷酸铁锂,物相均一。以硫酸亚铁为铁源时合成的磷酸铁粒径较小,表面较光滑,结构疏松,密度较小,颗粒大小在1-3 μm之间,且随着反应温度的升高,磷酸铁的粒径逐渐变大;随着pH的增加,磷酸铁的粒径变大。在pH为1.5时,55 ℃下合成的磷酸铁制备的磷酸铁锂0.2 C圣埃克絮佩里倍率下的放电比容量最
高,达到141.4 mAh/g,而40 ℃下合成的磷酸铁制备的磷酸铁锂5 C倍率下的放电比容量最高,达到55.2 mAh/g。在pH为2.0时,40 ℃下合成的磷酸铁制备的磷酸铁锂在0.2 C和5 C倍率下的放电比容量均最高,分别为148.6 mAh/g和52.3 mAh/g。以硝酸铁为铁源时合成的磷酸铁粒径较大,分布也不均匀,表面较粗糙,粒径在15 μm左右。在pH为1.5的条件下,70 ℃下合成的磷酸铁制备的磷酸铁锂0.2 C倍率下的放电比容量最高,达到109.8 mAh/g,而55 ℃下合成的磷酸铁制备的磷酸铁锂5 C倍率下的放电比容量最高,达到58.9 mAh/g。
(2) 以水热合成法合成磷酸铁时,磷酸铁颗粒界限明显,分散性好。当温度越高,水热时间越长,磷酸铁结晶性越好。以硫酸亚铁为铁源时合成的磷酸铁为斜方晶系FePO4·2H2O,其中含有一定量的Fe2(NH4)(OH)(PO4)2·2H2O、FeH2P3O10·H2O、Fe(H2PO4)3等杂质,且空间为P21/n的单斜晶系杂质Fe2(NH4)(OH)(PO4)2·2H2O相对含量较高;以硝酸铁为铁源时合成的磷酸铁既含有斜方晶系的FePO4·2H2O,也有单斜晶系的FePO4·2H2O,还含有其他一些铁磷化合物杂质,当水热温度升高时,斜方晶系的Fe5(PO4)4(OH)3·2H2O的杂质含量也随之升高。以硫酸亚铁为铁源时合成的磷酸铁颗粒粒径较大,平均粒度在10-15 μm之间,粒度分布均匀;以硝酸铁为铁源时合成的磷酸铁粒径相对较小,在6
μm左右,但粒度分布不均匀,分布范围较宽。使用硫酸亚铁为铁源时合成的磷酸铁颗粒为类球形,当合成温度为180 ℃时,颗粒变为椭球形;以硝酸铁为铁源时,合成的磷酸铁颗粒则呈椭球形或花生状形貌。以硫酸亚铁为铁源时,水热120 ℃反应2 h合成的磷酸铁制备的磷酸铁锂在0.2 C倍率下的放电比容量最高,为142 mAh/g,水热150 ℃反应10 h合成的磷酸铁制备的磷酸铁锂在5 C倍率下的放电比容量最高,约为78 mAh/g;以硝酸铁为铁源时,水热120 ℃反应6 h合成的磷酸铁制备的磷酸铁锂在0.2 C和5 C倍率下的放电比容量均最高,分别为124.5 mAh/g和66 mAh/g。
(3) 使用硫酸亚铁为铁源,采用水热合成法,在150-180 ℃下反应6-10小时,得到的磷酸铁结晶性好,形貌为类球形,制备出的磷酸铁锂会具有较好的综合性能。
关键词:锂离子电池;磷酸铁锂;磷酸铁;沉淀法;水热合成法
The Effect of Morphology of Iron Phosphate on
the Electrochemical Performance of Lithium Iron
Phosphate
ABSTRACT
Lithium-ion battery is the third generation of rechargeable secondary battery, it has the advantages such as high operating voltage, higher specific capacity, long cycle life and little environmental pollution, so in recent years, it becomes a hot research field of chemical power, and has broad application prospects. Compared with the conventional secondary battery such as Ni-Cd, Ni-MH and the lead-acid battery, lithium ion battery has incomparable advantages.
But now lithium-ion battery still has the disadvantages of high cost, poor security, low power density, and these are limiting the widespread application of the lithium-ion battery, especially lithium-ion battery. Cathode material plays a decisive role, it not only affects the cost of the lithium-ion battery, but also determines the overall performance of the battery. Therefore, the study of the cathode material is the key.
扬州大学职前教育Traditional lithium-ion battery cathode materials exist the defects in terms of price, safety, cycle performance and so on, such as lithium cobalt oxide has pour security performance,
the price is expensive and it is toxic; lithium nickel oxide’停电宝s preparation is difficult, and has pour security performance; lithium manganese oxide has poor cycle stability, and capacity fading is fast. The lithium iron phosphate (LiFePO4) of olivine-type structure has the advantages of wide range of sources of raw materials, high specific capacity, low cost, environmental pollution, and good cycle stability and good safety, to be of great concern in global academia and industry.
Iron source of traditional high temperature solid phase method to prepare LiFePO4 cathode material is generally the divalent iron such as ferrous oxalate, ferrous acetate, etc., but taking into account the high cost of divalent iron source and it is easily oxidized, but also in industrial synthesis of LiFePO4 using source of divalent iron production will produce large amounts of CO2 gas, it not only pollute the air, but also caused by corrosion to production equipment, Therefore, in recent years it gradually shift to low-cost and no easily oxidized ferric iron source, such as ferric phosphate, iron oxide (Fe2O3) and so on.
In recent years, the carbothermal reduction method preparation of lithium iron phosphate technology using the raw material of ferric phosphate has been widely used. Carbothermal reduction method is using excess carbon source as a reducing agent and a conductive agent added to the reaction therewith sufficiently mixed with the reagent containing trivalent iron as an iron source, the ferric reducing to divalent iron at high temperatures and get the product. The main advantages of the ferric phosphate process is simple and easy to control, 军事历史研究to effective control raw materials batch stability can be effectively improved. This method can be applied to large-scale production, it is a practical technology method.
In the process for preparing lithium iron phosphate using ferric phosphate as iron source, the structure and morphology of ferric phosphate has a great impact on the performance of the lithium iron phosphate product, the electrochemical performance of lithium iron phosphate is totally different by using the different type of ferric phosphate.

本文发布于:2024-09-22 02:00:01,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/370952.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:合成   电池   铁源   制备   水热   性能   容量   研究
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议