材料力学概念

材料力学
材料力学研究材料在各种外力作用下产生的应变、应力强度、刚度和导致各种材料破坏的极限。材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。学习材料力学一般要求学生先修高等数学和理论力学。
材料力学(mechanics of materials)是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。学习材料力学一般要求学生先修高等数学和理论力学。材料力学与理论力学、结构力学并称三大力学。
材料力学(mechanics of materials)主要研究杆件的应力、变形以及材料的宏观力学性能的学科。材料力学是固体力学的一个基础分支。它是研究结构构件和机械零件承载能力的基础学科。其基本任务是:将工程结构和机械中的简单构件简化为一维杆件,计算杆中的应力、变形并研究杆的稳定性,以保证结构能承受预定的载荷;选择适当的材料、截面形状和尺寸,以便设计出既安全又经济的结构构件和机械零件。
材料力学是工程设计的基础之一,即结构构件或机器零件的强度、刚度和稳定性分析的基础。在工程设计中,要求构件或零件在给定外力作用下,具有足够的强度、刚度和稳定性。构件或零件在外力作用下,不发生破坏,也不发生塑性变形,则称其具有足够的强度;若弹性变形不超过一定限度,则称其具有足够的刚度;若在特定外力(如细长杆承受轴向压力)作用下,其平衡和变形形式无突然转变,则称其具有足够的稳定性。
在结构承受载荷或机械传递运动时,为保证各构件或机械零件能正常工作,构件和零件必须符合如下要求:不发生断裂,即具有足够的强度;弹性变形应不超出允许的范围,即具有足够的刚度;在原有形状下的平衡应是稳定平衡,也就是构件不会失去稳定性。对强度、刚度和稳定性这三方面的要求,有时统称为“强度要求”,而材料力学在这三方面对构件所进行的计算和试验,统称为强度计算和强度试验。
在人们运用材料进行建筑、工业生产的过程中,需要对材料的实际承受能力和内部变化进行研究,这就催生了材料力学。运用材料力学知识可以分析材料的强度、刚度和稳定性。材料力学还用于机械设计使材料在相同的强度下可以减少材料用量,优化机构设计,以达到降低成本、减轻重量等目的。博司捷
在材料力学中,将研究对象被看作均匀、连续且具有各向同性的线性弹性物体。但在实际研究中不可能会有符合这些条件的材料,所以须要各种理论与实际方法对材料进行实验比较。
材料在机构中会受到拉伸、压缩、弯曲、扭转及其组合等变形。根据胡克定律(Hooke's law),在弹性限度内,物体的应力与应变成线性关系。
典型的实验包括:
简单拉伸压缩实验
冲击破坏实验
稳定性
微小形变测量
材料弹性测量
材料力学的任务
  1. 研究材料在外力作用下破坏的规律;
  2. 为受力构件提供强度,刚度和稳定性计算的理论基础条件;
  3. 解决结构设计安全可靠与经济合理的矛盾。
  材料力学基本假设
  1、连续性假设——组成固体的物质内毫无空隙地充满了固体的体积:
  2、均匀性假设--在固体内任何部分力学性能完全一样:
  3、各向同性假设——材料沿各个不同方向力学性能均相同:
  4、小变形假设——变形远小于构件尺寸,便于用变形前的尺寸和几何形状进行计算研究。
  在人们运用材料进行建筑、工业生产的过程中,需要对材料的实际承受能力和内部变化进行研究,这就催生了材料力学。运用材料力学知识可以分析材料的强度、刚度和稳定性。
材料力学还用于机械设计使材料在相同的强度下可以减少材料用量,优化机构设计,以达到降低成本、减轻重量等目的。在材料力学中,将研究对象被看作均匀、连续且具有各向同性的线性弹性物体,但在实际研究中不可能会有符合这些条件的材料,所以须要各种理论与实际方法对材料进行实验比较。材料在机构中会受到拉伸或压缩、弯曲、剪切、扭转及其组合等变形。根据胡克定律(Hooke's law),在弹性限度内,材料的应力与应变成线性关系。
材料力学 - 研究内容
王子灿
材料力学
材料力学的研究通常包括两大部分:一部分是材料的力学性能(或称机械性能)的研究,材料的力学性能参量不仅可用于材料力学的计算,而且也是固体力学其他分支的计算中必不可少的依据;另一部分是对杆件进行力学分析。杆件按受力和变形可分为拉杆、压杆受弯曲(有时还应考虑剪切)的粱和受扭转的轴等几大类。杆中的内力有轴力、剪力、弯矩和扭矩。杆的变形可分为伸长、缩短、挠曲和扭转。在处理具体的杆件问题时,根据材料性质和变形情况的不同,可将问题分为线弹性问题、几何非线性问题、物理非线性问题三类。
赵铭胸围
线弹性问题是指在杆变形很小,而且材料服从胡克定律的前提下,对杆列出的所有方程都是线性方程,相应的问题就称为线性问题。对这类问题可使用叠加原理,即为求杆件在多种外力共同作用下的变形(或内力),可先分别求出各外力单独作用下杆件的变形(或内力),然后将这些变形(或内力)叠加,从而得到最终结果。几何非线性问题是指杆件变形较大,就不能在原有几何形状的基础上分析力的平衡,而应在变形后的几何形状的基础上进行分析。这样,力和变形之间就会出现非线性关系,这类问题称为几何非线性问题。物理非线性问题是指材料内的变形和内力之间(如应变和应力之间)不满足线性关系,即材料不服从胡克定律。解决这类问题可利用卡氏第一定理、克罗蒂—恩盖塞定理或采用单位载荷法等。
材料力学 - 研究方法
示意图
简化计算方法材料力学处理一维问题的基本方法。包括载荷简化、物性关系简化以及结构形状简化等。
平衡方法杆件整体若是平衡的,则其上任何局部都一定是平衡的,这是分析材料力学中各类平衡问题的基础。确定内力分量及其相互关系、确定梁的剪应力、分析一点的应力状态等均以此为依据。
变形协调分析方法对结构而言,各构件变形间必须满足协调条件。据此,并利用物性关系即可建立求解静不定(仅用静力平衡方程不能确定结构全部内力和支座反力)问题的补充方程。对于弹性构件,其各部分变形之间也必须满足协调条件。据此,分析杆件横截面上的应力时,通过“平面假设”,并借助于物性关系,即可得到横截面上的应力分布规律。
能量方法将能量守恒定律、虚位移原理、虚力原理、最小势能原理与最小余能原理应用于杆件或杆件系统,得到若干分析与计算方法,包括导出平衡或协调方程、确定指定点位移或杆件位移函数的近似方法、判别杆件平衡稳定性并计算临界载荷、动载荷作用效应的近似分析等。辽宁同志
叠加方法在线弹性和小变形的条件下,且当变形不影响外力作用时,作用在杆件或杆件系统上的载荷所产生的某些效应是载荷的线性函数,因而力的独立作用原理成立。据此,可将复杂载荷分解为若干基本或简单的情形,分别计算它们所产生的效果,再将这些效果叠加便得到复杂载荷的作用效果。可用于确定复杂载荷下的位移、组合载荷作用下的应力、确定应力强度因子等。正确而巧妙地应用结构与载荷的对称性与反对称性,则是叠加法的特殊情形。灿都
类比法表示一些量之间关系的方程与另一些量之间的关系或相似时,通过其中之简单者较容易确定与之相似的那些量,称为类比法或比拟法。由此派生出图解解析法和图解法。如:应力圆法、共轭梁法、确定弹性位移和薄壁截面扇性面积几何性质的图乘法等。
剪力是指与受力面平行的外力,单位是牛顿。剪应力属于内力,单位面积上内力称为应力,同截面相切的称为剪应力或切应力,单位是帕斯卡。
最大弯矩和最大应力没有绝对的关系,因为应力还和受力点的材质和截面大小有关系。也就是说如果是同材质等直梁的话,最大弯矩处应该就是最大应力处。
另外你可以了解下等强度梁的概念。等强度梁越靠近支座的地方截面越大,所以梁上的应力分布是均匀的。
栾茂田当材料在外力作用下不能产生位移时,它的几何形状和尺寸将发生变化,这种形变就称为应变(Strain)。材料发生形变时内部产生了大小相等但方向相反的反作用力抵抗外力.把分布内力在一点的集度称为应力(Stress),应力与微面积的乘积即微内力.或物体由于外因(受力、湿度变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并力图使物体从变形后的位置回复到变形前的位置。
  应力定义为“单位面积上所承受的附加内力”。公式记为σ=ΔFj/ΔAi
  其中,σ表示应力;ΔFj表示在j 方向的施力;ΔAi 表示在i方向的受力面积。
  因为力是矢量,如果受力面积与施力方向平行则称正应力,如图1所示的σx 与σy;如果受力面积与施力方向互相正交则称剪应力(shear stress),如图1所示的τxy与τyx。
  “内应力[1]”指组成单一构造的不同材质之间,因材质差异而导致变形方式的不同,继而产生的各种应力。
  当材料在外力作用下而又不产生惯性移动时,它的几何形状和尺寸将发生变化,这种形变就称为应变(Strain)。材料发生形变时内部产生了大小相等但方向相反的反作用力抵抗外力.把分布内力在一点的集度称为应力(Stress),应力与微面积的乘积即微正向应力与剪应力内力.或物体由于外因(受力、湿度变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并力图使物体从变形后的位置回复到变形前的位置。在所考察的截面某一点单位面积上的内力称为应力(Stress)。按照应力和应变的方向关系,可以将应力分为正应力σ和切应力τ,正应力的方向与应变方向平行,而切应力的方向与应变垂直。按照载荷(Load)作用的形式不同,应力又可以分为拉伸压缩应力、弯曲应力和扭转应力。
应力的分类
正向应力与剪应力
  同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。应力会随着外力的增加而增长,对于某一种材料,应力的增长是有限度的,超过这一限度,材料就要破坏。对某种材料来说,应力可能达到的这个限度称为该种材料的极限应力。极限应力值要
通过材料的力学试验来测定。将测定的极限应力作适当降低,规定出材料能安全工作的应力最大值,这就是许用应力。材料要想安全使用,在使用时其内的应力应低于它的极限应力,否则材料就会在使用时发生破坏。
  有些材料在工作时,其所受的外力不随时间而变化,这时其内部的应力大小不变,称为静应力;还有一些材料,其所受的外力随时间呈周期性变化,这时内部的应力也随时间呈周期性变化,称为交变应力。材料在交变应力作用下发生的破坏称为疲劳破坏。通常材料承受的交变应力远小于其静载下的强度极限时,破坏就可能发生。另外材料会由于截面尺寸改变而引起应力的局部增大,这种现象称为应力集中。对于组织均匀的脆性材料,应力集中将大大降低构件的强度,这在构件的设计时应特别注意。

本文发布于:2024-09-21 16:25:34,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/368629.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:应力   材料   变形   材料力学   强度   问题   载荷
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议