氧化磷酸化(概念、化偶联机制、影响、感化)[精彩]

氧化磷酸化(概念、化偶联机制、影响、作用)
氧化磷酸化,生物化学过程,是物质在体内氧化时释放的能量供给ADP与无机磷合成A TP的偶联反应。主要在线粒体中进行。在真核细胞的线粒体或细菌中,物质在体内氧化时释放的能量供给ADP与无机磷合成A TP的偶联反应。
一、氧化磷酸化的概念和偶联部位
概念:磷酸化是指在生物氧化中伴随着A TP生成的作用。有代谢物连接的磷酸化和呼吸链连接的磷酸化两种类型。即A TP生成方式有两种。一种是代谢物脱氢后,分子内部能量重新分布,使无机磷酸酯化先形成一个高能中间代谢物,促使ADP变成A TP。这称为底物水平磷酸化。如3-磷酸甘油醛氧化生成1,3-二磷酸甘油酸,再降解为3-磷酸甘油酸。另一种是在呼吸链电子传递过程中偶联A TP的生成,这就是氧化磷酸化。生物体内95%的A TP 来自这种方式。
偶联部位:根据实验测定氧的消耗量与A TP的生成数之间的关系以及计算氧化还原反应中ΔGO'和电极电位差ΔE的关系可以证明。
P/O比值是指代谢物氧化时每消耗1摩尔氧原子所消耗的无机磷原子的摩尔数,即合成A TP的摩尔数。实验表明,NADH在呼吸链被氧化为水时的P/O值约等于2.5,即生成2.5分子A TP;FADH2氧化的P/O值约等于1.5,即生成1.5分子A TP。
云南桥头堡建设
whetheror氧-还电势沿呼吸链的变化是每一步自由能变化的量度。根据ΔGO'= -nFΔE O'(n是电子传递数,F是法拉第常数),从NADH到Q段电位差约0.36V,从Q到Cytc为0.21V,从aa3到分子氧为0.53V,计算出相应的ΔGO'分别为69.5、40.5、102.3kJ/mol。于是普遍认为下述3个部位就是电子传递链中产生A TP的部位。
npaNADH→NADH脱氢酶→‖Q →细胞素bc1复合体→‖Cytc→aa3→‖O2
二、胞液中NADH的氧化
糖代谢中的三羧酸循环和脂肪酸β-氧化是在线粒体内生成NADH(还原当量),可立即通过电子传递链进行氧化磷酸化。在细胞的胞浆中产生的NADH ,如糖酵解生成的NADH 则要通过穿梭系统(shuttle system)使NADH的氢进入线粒体内膜氧化。
(一)α-磷酸甘油穿梭作用
这种作用主要存在于脑、骨骼肌中,载体是α-磷酸甘油。
胞液中的NADH在α-磷酸甘油脱氢酶的催化下,使磷酸二羟丙酮还原为α-磷酸甘油,后者通过线粒体内膜,并被内膜上的α-磷酸甘油脱氢酶(以FAD为辅基)催化重新生成磷酸二羟丙酮和FADH2,后者进入琥珀酸氧化呼吸链。葡萄糖在这些组织中彻底氧化生成的A TP比其他组织要少,1摩尔G→36摩
尔A TP。
(二)苹果酸-天冬氨酸穿梭作用
主要存在肝和心肌中。1摩尔G→38摩尔A TP
胞液中的NADH在苹果酸脱氢酶催化下,使草酰乙酸还原成苹果酸,后者借助内膜上的α-酮戊二酸载体进入线粒体,又在线粒体内苹果酸脱氢酶的催化下重新生成草酰乙酸和NADH。NADH进入NADH氧化呼吸链,生成3分子A TP。草酰乙酸经谷草转氨酶催化生成天冬氨酸,后者再经酸性氨基酸载体转运出线粒体转变成草酰乙酸。
三、氧化磷酸化偶联机制
(一)化学渗透假说
1961年,英国学者Peter Mitchell提出化学渗透假说(1978年获诺贝尔化学奖),说明了电子传递释出的能量用于形成一种跨线粒体内膜的质子梯度(H+梯度),这种梯度驱动
A TP的合成。这一过程概括如下:
1.NADH的氧化,其电子沿呼吸链的传递,造成H+ 被3个H+ 泵,即NADH脱氢酶、细胞素bc1复合体和细胞素氧化酶从线粒体基质跨过内膜泵入膜间隙。
2.H+ 泵出,在膜间隙产生一高的H+ 浓度,这不仅使膜外侧的pH较内侧低(形成pH 梯度),而且使原有的外正内负的跨膜电位增高,由此形成的电化学质子梯度成为质子动力,是H+ 的化学梯度和膜电势的总和。
减肥行为疗法
3.H+ 通过A TP合酶流回到线粒体基质,质子动力驱动A TP合酶合成A TP。
(二)A TP合酶
A TP合酶由两部分组成(Fo-F1),球状的头部F1突向基质液,水溶性。亚单位Fo埋在内膜的底部,是疏水性蛋白,构成H+ 通道。在生理条件下,H+ 只能从膜外侧流向基质,通道的开关受柄部某种蛋白质的调节。
四、影响氧化磷酸化的因素
(一)抑制剂
能阻断呼吸链某一部位电子传递的物质称为呼吸链抑制剂。
秘林
鱼藤酮、安密妥在NADH脱氢酶处抑制电子传递,阻断NADH的氧化,但FADH2的氧化仍然能进行。
抗霉素A抑制电子在细胞素bc1复合体处的传递。
、CO、叠氮化物(N3-)抑制细胞素氧化酶。
对电子传递及ADP磷酸化均有抑制作用的物质称氧化磷酸化抑制剂,如寡霉素。
(二)解偶联剂
2,4-二硝基苯酚(DNP)和颉氨霉素可解除氧化和磷酸化的偶联过程,使电子传递照常进行而不生成A TP。DNP的作用机制是作为H+的载体将其运回线粒体内部,破坏质子梯度的形成。由电子传递产生的能量以热被释出。
(三)ADP的调节作用
正常机体氧化磷酸化的速率主要受ADP水平的调节,只有ADP被磷酸化形成A TP,电子才通过呼吸链流向氧。如果提供ADP,随着ADP的浓度下降,电子传递进行,A TP在合成,但电子传递随ADP浓度的下降而减缓。此过程称为呼吸控制,这保证电子流只在需要A TP合成时发生。
等量分流器五、氧化磷酸化作用
氧化磷酸化作用是指有机物包括糖、脂、氨基酸等在分解过程中的氧化步骤所释放的能量,驱动A TP合成的过程。在真核细胞中,氧化磷酸化作用在线粒体中发生,参与氧化及磷酸化的体系以复合体的形式分布在线粒体的内膜上,构成呼吸链,也称电子传递链。其功能是进行电子传递、H^+传递及氧的利用,产生H2O和A TP
扩展:这种复合体一般有四个部分组成:复合体1.NADH-Q还原酶,复合体2.琥珀酸
—Q还原酶.复合体3.细胞素还原酶.4细胞素氧化酶。
电子在电子载体的传递过程为:NADH或FADH 2 --Q(泛醌)——细胞素c——O2(形成水和A TP的过程)。

本文发布于:2024-09-21 20:49:59,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/351736.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:氧化   线粒体   呼吸   生成   过程
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议