接地故障选线原理综述

接地故障选线原理综述
摘要:简要分析发生单相接地故障时系统的基本特征,并在此基础上回顾了小电流系统单相接地保护在国内外研究发展的历史,系统分析了几种保护原理的特点,提出了尚需解决的问题,最后给出了分析的结论。 
  关键词:小接地电流系统 单相接地 故障选线  调查公民个人信息
  引言
   目前世界各国的配电网都采用中性点不直接接地方式(NUGS)。因其发生接地故障时,流过接地点的电流小,所以称其为小电流接地系统。可分为中性点不接地系统(NUS)、中性点经电阻接地系统(NRS)和中性点经消弧线圈接地系统(NES)。故障时由于三个线电压仍然对称,特别是中性点经消弧线圈接地系统,流过接地点的电流很小,不影响对负荷连续供电,《电力系统安全规程》规定仍可继续运行0.5~2个小时。但小接地电流系统在单相接地时,非故障相电压会升为线电压,长时间带故障运行极易产生弧光接地,形成两点接地故障,引起系统过电压,从而影响系统的安全。因此,需要一种接地后能选择故障线路的装置进行故障检测,一般不动作于跳闸而仅动作于信号。 
 
  研究状况回顾
   国外对小电流接地保护的处理方式各不相同。前苏联采用中性点不接地方式和经消弧线圈接地方式,保护主要采用零序功率方向原理和首半波原理。日本采用高阻抗接地方式和不接地方式,但电阻接地方式居多,其选线原理较为简单,不接地系统主要采用功率方向继电器,电阻接地系统采用零序过电流保护瞬间切除故障线路。近年来一些国家在如何获取零序电流信号及接地点分区段方面作了不少工作并已将人工神经网络应用于接地保护。美国电网中性点主要采用电阻接地方式,利用零序过电流保护瞬间切除故障线路,但故障跳闸仅用于中性点经低阻接地系统,对高阻接地系统,接地时仅有报警功能。法国过去以地电阻接地方式居多,利用零序过电流原理实现接地故障保护,随着城市电缆线路的不断投入,电容电流迅速增大,已开始采用自动调谐的消弧线圈以补偿电容电流,并为解决此种系统的接地选线问题,提出了利用Prony方法[1]和小波变换以提取故障暂态信号中的信息(如频率、幅值、相位)以区分故障与非故障线路的保护方案,但还未应用于具体装置。挪威一公司采用测量零序电压与零序电流空间电场和磁场相位的方法,研制了一种悬挂式接地故障指示器,分段悬挂在线路和分叉点上。加拿大一公司研制的微机式接地故障继电器也采用了零序过电流的保护原理,其软件算法部分采用了沃尔什函数,以提高计算
接地故障电流有效值的速度。90年代,国外有将人工神经网络及专家系统方法应用于保护的文献。
 
   我国配电网和大型工矿企业的供电系统大都采用中性点不接地或经消弧线圈接地的运行方式,近年来一些城市电网改用电阻接地运行方式。矿井6~10kV电网过去一直采用中性点不接地方式,随井下供电线路的加长,电容电流增大。近年来消弧线圈在矿井电网中得到了推广应用并主要采用消弧线圈并串电阻的接地方式。单相接地保护原理研究始于1958年,保护方案从零序电流过流到无功方向保护,从基波方案发展到五次谐波方案,从步进式继电器到体比幅比相,以及首半波方案,先后推出了几代产品,如许昌继电器厂的ZD系列产品,北京自动化设备厂的XJD系列装置,中国矿大的μP-1型微机检漏装置和华北电力大学研制的系列微机选线装置等。
 
  单相接地时NUGS的主要特征
   现对NUGS单相接地故障前后的特征归纳如下:
 
   (1) 零序电压互感器开口电压通常为零。(实际上由于不平衡电压的影响小于5V)。接地后接近100V(金属性接地:经电阻接地U02(30,100))
 
   (2) 非接地线路(设线路序号为K)的零序电流Iok为该线路对地等效电容电流,相位超前零序电压U090°
 
   (3) 接地线路的零序电流I0和非接地线路的零序电流方向相反,即相位滞后零序电压U090°,且等于所有非接地线路中电容电流与变压器中性点电流之和。
 
   (4) 对经消弧线圈接地系统(NES),零序电流5次谐波对以上结论成立。
 
   (5) 以上结论,与故障点接地电阻,系统运行方式,电压水平和负荷无关。 
 
   常规微机小电流接地选线装置的工作原理一般都是基于以上几个特点设计的,但实现方式和可靠性程度不尽相同。
 
  对几种选线保护原理的讨论
   3.1 早期的单一判据原理
 
   由于线路自身的电容电流可能大于系统中其他线路的电容电流之和,所以按零序电流大小整定的过电流继电器理论上就不完善,它还受系统运行方式、线路长短等许多因素的影响,而导致误选、漏选、多选;“功率方向原理采用逐条检测零序电流I0功率方向来完成选线功能,当用于短线路时,由于该线路的零序电流小,再加之功率方向受干扰,在一定程度上选线是不可靠的,更多地发生误、漏选情况用各线路零序电流作比较,选出零序电流最大的线路为故障线路的最大值原理,在多条线路接地或线路长短相差悬殊的情况下,很可能造成误选和多选;“首半波原理基于接地故障发生在相电压接近最大值瞬间这一假设,利用故障后故障线路中暂态零序电流每一个周期的首半波与非故障线路相反的特点实现选择性保护,但它不能反映相电压较低时的接地故障,且受接地过渡电阻影响较大,同时存在工作死区利用5次或7次谐波电流的大小或方向构成选择性接地保护的谐波方向原理,由于5次或7次谐波含量相对基波而言要小得多,且各电网的谐波含量大小不一,故其
零序电压动作值往往很高,灵敏度较低,在接地点存在一定过渡电阻的情况下将出现拒动现象。
 
   3.2 体比幅比相原理
 
  安丰市场 此种方法为多重判据,多重判据即为用二种及以上原理为判据,增加可靠性和抗干扰性能力,减少受系统运行方式、长短线、接地电阻的影响。文[2]采用幅值法与相位法相结合,先用最大值原理从线路中选出三条及以上的零序电流I0最大的线路,然后用功率方向原理从选出的线路中查零序电流I0滞后零序电压U0的线路,从而选出故障线路。该方案称为3C方案,因排队后去掉了幅值小的电流,在一定程度上避免了时针效应,另外排队也避免了设定值,具有设定值随动的水涨船高的优点。它既可以避免单一判据带来的局限性,也可以相对缩短选线的时间,是较理想的方式。
 
   3C方案中,因I3也可能较小,由此相位决定是I2还是I1接地可能引起误判,I3越小,误判率越高,为此文[3]提出的MLN系列微机选线装置扩展了4种选线方案,除3C方案外,增加
2C1V1C1V2C1C方案,由计算机按不同条件选择合适的方案或人为设定方案判线,判线准确率得到进一步改善。
 
   小电流系统单相接地投入保护跳闸后,要求保护装置具有更高的可靠性。文[4]将模糊决策理论引入了MLN-R系列小电流微机保护屏,将5种选线方案按模糊决策组合裁决,给出跳闸出口的同时还打印出可信度。
 
   3.3 “注入法原理[5]
 
清教徒的假面   它不利用小电流接地系统单相接地的故障量,而是利用单相接地时原边被短接暂时处于不工作状态的接地相PT,人为地向系统注入一个特殊信号电流,用寻迹原理即通过检测,跟踪该信号的通路来实现接地故障选线。当系统发生单相接地时,注入信号电流仅在接地线路接地相中流动,并经接地点入地。利用一种只反映注入信号而不反映工频及其谐波成分的信号电流探测器,对注入电流进行寻踪,就可实现单相接地故障选线与接地点定位。其主要特点有: (1)勿需增加任何一次设备不会对运行设备产生任何不良影响。(2)注入信号
具有不同于系统中任何一种固有信号的特征,对它的检测不受系统运行情况的影响。(3)注入信号电流仅在接地线路接地相中流通,不会影响系统的其它部位。
 
   3.4 注入变频信号法
 
   为解决“S注入法在高阻接地时存在误判的问题,文[6]提出注入变频信号法。其原理是根据故障后位移电压大小的不同,选择向消弧线圈电压互感器副边注入谐振频率恒流信号还是向故障相电压互感器副边注入频率为70Hz的恒流信号,然后监视各出线上注入信号产生的零序电流功角、阻尼率的变化,比较各出线阻尼率的大小,再计及线路受潮及绝缘老化等因素可得出选线判据。但当接地电阻较小时,信号电流大部分都经故障线路流通,导致非故障线路上阻尼率误差较大。
 
   3.5 最大(Isinj)原理
 
   1为理想情况下单相接地故障后零序电压与故障、非故障零序电流的相量关系。其中,
3U0为故障后出现的零序电压,在故障前它的大小为零; 3I0,F为故障线路的零序电流,它超前3U090°; 3I0,N为非故障线路的零序电流,它滞后3U090°, 3I0,F在数值上小很多; 3I0,T为变压器的接地电流,它与接地故障判断无关。因此,理想情况下,只要对各出线零序电流的大小或方向进行比较,就可出故障线路。但当变电站为三相架空出线时,3I0的大小和方向要受到CT的不平衡电流Ibp的影响。最坏的情况是,由于Ibp 的影响,实际检测得到的故障线路的零序电流3I′0,F=3I0,F+Ibp,F)与非故障线路的零序电流3I′0,N=3I0,N+Ibp,,N)方向相同,如图2所示。显然,此时只对各出线零序电流的大小或方向进行比较将会造成误判。
   
  为了解决上述问题,文[7]提出最大(Isinj)方案把所有线路故障前、后的零序电流3I0,I,前、3I0,I,后都投影到3I0,F方向上。接着,计算出各线路故障前、后的投影值之差I0,I,出差值的最大值I0,k,即最大的(Isinj)。显然,当I0,k>0时,对应的线路k为故障线路,否则为h段母线故障。
 
   该原理实际上是一种最大故障电流突变量原理,能完全克服CT误差引起的不平衡电流的
影响,减少了误判的可能性,灵敏度高适用范围广,是现有判别方法中较成功、有效的一种方法。但其算法有两个缺陷计算过程中需选取一个中间参考正弦信号,如果该信号出现问题将造成该算法失效该算法在计算过程中需求出有关相量的相位关系,计算量相当大,这使得最大(Isinj)原理在实现过程中很难保证具有较高的可靠性和实时性。
 
   针对上述缺陷,文[8]提出实现最大(Isinj)的快速算法——递推DFT算法,完全省去了中间参考正弦量,同时极大地简化了原有算法的计算工作量,使得最大(Isinj)原理可以快速、可靠地实现,从而有了更广阔的应用前景。
 
   3.6 能量法
 
   [9]利用其所定义的零序能量函数实现小电流接地选线根据非故障线路的能量函数总是大于零,消弧线圈的能量函数与非故障线路极性相同,故障线路的能量函数总是小于零,并且其绝对值等于其他线路(包括消弧线圈)能量函数的总和的特征,提出方向判别和大小判别两种接地选线方法。能量法适用于经消弧线圈接地系统,并且不受负荷谐波源和暂态
过程的影响,从而在理论上解决了传统方法选线准确率低的问题。 
 
   3.7 遥感式小电流接地选线原理
 
   [10]利用带电导体周围产生电磁场,交变电流的幅值可以通过在其激励的电磁场中的某一点所感应出的电动势的大小直接反映出来的原理,测量导线中电容电流5次谐波的变化情况,来判断故障线路。其做法是在所有的输电线出口处,都装设一个遥测装置(探测器),而这个装置只接收电容电流中的5次谐波电磁场,每个装置接收的信号再集中送至中心处理装置比较出信号最强的线路,这条线路就是发生接地故障的线路。由于采用遥感接收,使得装置与电力系统一次设备不发生直接接触,是保证电力系统安全运行的较理想的装置。
 
   3.8 负序电流选线原理
 
   [11]提出一种利用负序电流及负序电流与零序电流比较的故障选线原理。它基于以下特点负序电流由故障点产生,流向电源和非故障线路,与电源的负序电流方向基本相反
于故障相电压在接地故障过渡电阻上产生故障电流,故障线路的负序电流与故障相电压相位一致。另外,在假设馈线保护安装处到线路末端的线路长度较短的条件下,IOK≈I2K, 即故障线路K保护安装处的负序电流近似等于零序电流。由这种原理构成的保护装置具有不受弧光接地影响,抗过渡电阻能力强,负序电流与零序电流比较式接地保护具有自适应等优点。但负序电流绝大部分由故障线路流向电源,非故障线路负序电流很小,方向准确测量困难,这就使得负序方向接地保护在实际配置中使用的可能性较小另外,当线路K保护安装处到线路末端线路较长时,负序与零序方向保护的假设不一定成立。该技术还有待进一步研究。
 
   3.9 基于小波变换的接地选线原理
 
   小波分析对暂态信号和微弱信号的变化较敏感,能可靠地提取出故障特征[12]~[14][19]。小波变换奇异性检测及模极大值理论已提出了实现故障启动和选线方法。文[15]运用由小波变换发展而来的小波包技术分解故障暂态信号,根据不同接地方式,选择能量集中的不同频带作为选线频带对中性点不接地配电网,选择能量集中的高频频带对中性点经
消弧线圈接地的配电网,选择能量次最大的调频频带,并提出了基于波形识别和模值比较的故障选线逻辑判据,最终给出选线序列。
 
   3.10 模式识别和多层前馈神经网络方法
 
   [16]提出用统计模式识别中基于最小错误的贝叶斯(Bayes)决策方法和人工神经网络方法进行小电流接地选线。它将故障后各线路零序电流看作某类故障的一个模式,通过人工神经网络的训练与学习来判断故障模式,从而实现故障选线。
 
  尚需解决的问题
   目前,国内的选线装置多采用零序电流及其高次谐波原理实现故障选线,首半波法、有功分量法等其它方法也均有采用。但是小电流系统的一个重要特征就是故障电流稳态分量幅值小,无论是谐波分量还是基波分量,都容易被干扰信号所淹没,二次侧的零序电流又容易受到CT中的不平衡电流的影响,因此基于谐波原理的装置在实际运行中易造成误判。
 
  结论
   (1) 配电系统发生单相接地故障时,故障信号中含有重要的暂态成分,根据此暂态信号的特征可实现故障线路的选择。具有很强的处理微弱信号能力的小波方法有利于改善高阻接地时装置的动作性能,在继电保护特别是故障分析中有着广阔的应用前景。
 
   (2) 目前,我国NRGS只装设两相CT的架空出线的数量很大,在这种情况下难以获得零序电流,基于零序电流的选线方法失效,所以对只有两相装CT的出线也适用的选线原理还有待进一步研究。
 
   (3) 目前,在大规模应用配电自动化技术进行单相接地故障的处理时机还未成熟时,采用独立的带有远动或通信功能的小电流接地选线设备不失为一种较实用的选择。

一种塑壳断路器智能化的实现方法
刘晓川,宋经华,史高飞,陈源宜
(北海银河高科技产业股份有限公司,广西省 北海市 536000

  摘 要: 对我国塑壳断路器技术现状进行分析,着重分析了基于TI公司MSP430F167微处理器的一种塑壳断路器智能脱扣控制器的硬件模块(包括电流输入、电源,信号调理,单片机系统和工作方式等)和软件设计(包括算法分析、数据采样、频率测量、程序结构等)的原理和技术特点。最后对我国低压电器行业特别是智能塑壳断路器进行了技术和市场的展望。
  关键词: 低压电器 塑壳断路器 智能控制器

0 引言

  随着计算机技术和通信技术引入低压电器,人们越来越多地提到智能电器的概念。所谓智能电器就是具有自动检测自身故障、自动测量、自动控制、自动调节和与远方控制中心通信等功能的电器设备。国内目前对低压电器智能化的研究主要集中在以下几个方面:设备的在线监测、信号采集及处理新方法的研究、电器本体的研究、智能电器可靠性及控制部分抗干扰能力的研究、通信的实现方法等。


  塑壳断路器是一种非常重要的低压电器。目前我国生产的塑壳断路器大体分为三代,第一代产品目前占有的市场份额约为35%;第二代产品为更新换代产品以及引进国外技术生产的产品,目前占有市场约40%份额,但随着国外大公司产品的进入,其占有份额明显下降;第三代产品为跟踪国外新技术而自行开发的产品,目前市场占有率不到25%。西方国家在20世纪90年代后期推出了智能化、可通信的第四代产品,具有前几代产品的许多优点,显示出塑壳断路器的发展趋势。

  总的来说,我国塑壳断路器产品的技术含量比较低,它的智能化已受到了行业越来越多的关注。本文结合国内外塑壳断路器的现状,针对MB30系列塑壳断路器,提出塑壳断路器智能化的一种具体实现方法。

1 塑壳断路器

  在低压配电系统中,塑壳断路器的应用非常广泛,它一般可用于配电馈线控制和保护、小
型配电变压器的低压侧出线总开关,动力配电终端控制和保护,以及住宅配电终端控制和保护,也可用于各种生产机械的电源开关。50A以下小容量的塑壳断路器采用非贮能式闭合,手动操作;大容量断路器的操动机构采用贮能式闭合,可以手动操作,亦可由电动机操作,电动机操作可实现远方遥控操作。塑壳断路器的额定电流一般为6~630A,有单极、二极、三极和四极;目前已有额定电流为800~3000A的大型塑壳式断路器。

  塑壳断路器的保护功能由欠压脱扣器、过电流脱扣器、分励脱扣器等各种脱扣器来实现。欠压脱扣器用来监视工作电压的波动,当电网电压降低至70% ~35%额定电压或电网发生故障时,断路器可立即分断,在电源电压低于35%额定电压时,能防止断路器闭合;带延时动作的欠压脱扣器,可防止因负荷陡升引起的电压波动造成断路器不适当地分断。分励脱扣器用于远距离遥控或热继电器动作分断断路器。过电流脱扣器还可分为过负荷脱扣器和短路脱扣器,用于防止过载和负载侧短路。一般断路器还具有短路锁定功能,用来防止断路器因短路故障分断后、故障排除前再合闸;断路器具有辅助触点,一般有常开触点和常闭触点,辅助触点供信号装置和智能式控制装置使用。

  传统的塑壳断路器采用热动式脱扣控制方式,利用负荷电流的热效应使双金属片受热弯曲产生变形控制脱扣。由于双金属片的形状结构和热变形精度难以保证,因而断路器脱扣延时时间难以精确控制,断路器断流精度不高。同时,它还有功能不完善的缺点,例如缺相故障无法判断、引起断路器故障的原因用户无法知道、维修不便等缺陷。

  用智能脱扣控制器去控制断路器脱扣,彻底消除了传统脱扣器的缺陷,并且为塑壳断路器技术上的革新奠定了基础,使塑壳断路器更容易用于低压配、用电信息网系统,发展成为基于现场总线支持的智能化、网络化、信息化的智能电器。

2 塑壳断路器智能控制器

2.1 硬件模块设计

  塑壳断路器智能控制器硬件包括电流输入、电源模块、前置处理、CPU系统、电位器调整、通信接口、人机交互插件、出口驱动、指示灯、按键操作、维护接口等部分,见图1。

图1 系统硬件框图

2.1.1 电流输入
  用3个电流互感器将三相电流转换为与智能控制器相匹配的交流电流信号,经过电压取样电路变换为交流电压信号。

2.1.2 电源模块
  塑壳断路器引入三相交流电压,智能控制器从输入的交流电压中获取能量,经过处理后得到2个独立的+5V电源,分别供给光耦两侧使用,以实现电气隔离。同时还得到一路+12V电源,供驱动出口继电器使用。

2.1.3 信号调理
  电流信号经电压取样后,经过射极跟随器、一阶无源抗混迭低通滤波、放大调理电路后变成与单片机系统相适应的交流电压信号。利用射极跟随器将电压取样电路和后置处理电路隔开,减少后置电路阻抗对电压取样电路的影响;一阶无源抗混迭低通滤波的截止频率满足仙农采样定律,滤掉频率在2fmax以上的信号。电流互感器在很大量程内具有线性度好的特点;一次电流的变化范围从几安培到几十、几百甚至上千安培;小信号容易受到干扰,将采集的信号分2路输入单片机系统,2路信号采用不同的放大倍数。信号较小时,单片机系统以较大放大倍数一路为准;信号较大时,单片机系统以较小放大倍数一路为准,见图2。

图2 单路信号调理电路

2.1.4 单片机系统
  采用TI公司的MSP430F167单片机作为主控芯片。该芯片内置32K FLASH存储器,1024 B RAM,2个Usart接口,8通道12位A/D转换器,48个I/O口,16位看门狗定时器,1个16位Timer_A(3个捕获/比较寄存器),1个 16位Timer_B(7个捕获/比较寄存器);采用RISC
指令结构。该芯片满足各种型号塑壳断路器的智能化要求,不用外扩任何协助电路,大大增强了抗干扰性能。
为了提高系统的可靠性,单片机系统扩展了电源监视、复位控制和硬件看门狗电路。

2.1.5 工作方式调整
  塑壳断路器的工作方式包括断路器的额定电流、保护投退、电流定值、时间定值、时限特征等,塑壳断路器工作方式的调整可以采用2种方式。
  (1) 电位器调整方式。对于额定电流225A的塑壳断路器,考虑到成本空间和尺寸空间的限制,采用带绝缘塑料旋钮的金属膜电位器调整断路器的工作方式。由于电位器的温度特性较差,在40℃范围内造成的误差可能超过2%,因此采用这种方式会造成误差,要求电位器阻值具有较大的冗余度。
  (2) 维护口和人机接口调整方式。对于额定电流>225A的塑壳断路器,由于有了更大的成本空间和尺寸空间,采用维护软件通过PC机调整断路器的工作方式,维护口采用RS-232接口,采用MODBUS报文格式;同时为塑壳断路器配置人机接口,通过数码管显示,小键盘设置各种工作参数;无操作时,数码管1min 自动熄灭,以降低功耗;所有设置必须验证
密码后进行,以防止误操作。

2.1.6 通信接口
  通信接口采用RS-485通信方式。通信规约采用低压电器设备要求的MODBUS通信规约,与通信适配器、上一层通信设备连接,或者直接连到变电站计算机管理系统。图3是采用通信适配器进行通信的结构示意图。
 
3 智能塑壳断路器通信网络

2.1.7 指示灯
提供的指示灯有工作指示灯、过负荷指示灯、通信指示灯、故障指示灯和校验指示灯。

2.1.8 出口驱动
  控制器带有停电、小负荷闭锁功能,双值反相逻辑输出功能,以保证出口操作的可靠性,避免上电、掉电、干扰造成的误动,见图4

4 出口驱动电路

2.2 软件设计

2.2.1 算法分析
采用交流采样技术,全波傅氏算法,根据采样数据提取等效复矢量的实部和虚部。
    (1)
式中,n为需要提取的基波或谐波次数;N为一周期的采样点数;x(k)为实时采样值。
由式(1)可以根据实时采样数据得到等效复矢量
    (2)
根据式(2)可知,基波或某次谐波的复值与相角可由式(3)、式(4)求得
    (3)
    (4)
  全波傅氏算法能够完全提取基波或所需的谐波分量,滤出直流分量和不需要的整次谐波分量,但对于非周期分量的抑制能力较差。当发生故障时,电力系统处于暂态过程中,含有
衰减的直流分量等非周期分量,将使傅氏算法带来误差。为此,采用差分滤波器来抑制非周期分量,使其与傅氏算法相配合。
y(n)=x)n)-x(n=k)    (5)
  式中,k为差分滤波器阶数,在塑壳智能控制器中,k2,即采用二阶差分滤波器。
  当电网频率发生偏移时,采用傅氏算法提取基波或谐波分量会产生混频现象,从而给电量的测量带来误差。为了消除由于电网频率偏移带来的误差,智能控制器可采用频率跟踪技术加以改善。根据所测频率实时调整采样间隔,以便始终满足式(6)
fs/f1=24    (6)
  fs为采样频率,f1为系统频率,严格保证每周期采样24点,这样即使频率发生波动,也不会造成较大的测量误差。

2.2.2 数据采样
  开辟生存主义2个采样数据缓冲区:一个用于采样数据的差分滤波,另一个用于存储差分滤波后的实时数据。由于采用二阶差分滤波器,使得每一路电流需开辟3个字的滤波缓冲区,缓冲区采用先进先出(FIFO)的队列结构,依次存放x(n-2)x(n-1)x(n)点实时采样数据,见图5


5 FIFO结构的滤波缓冲区

  全波傅氏算法要求数据的排列为一连续周期采样数据,由于采用24点全波傅氏算法,如果仍采用FIFO队列结构,则将会消耗大量的时间。为此为每个电流开辟48字的循环采样缓冲区。

2.2.3 频率测量
  采用交流采样值线性拟合过零点算法,精确地计算电力系统的频率值,见图6。点BA分别为过零点前后的2个采样点,B′、A′为下一个过零点前后的2个采样点,B′、A点相差K个采样点,于是实测工频周期为
    (7)
式中,Ts为采样周期,频率为工频周期的倒数。
 
小妖精们来了6 软件测量频率的方法

2.2.4 程序结构
  采用主程序和中断程序相结合的程序结构,见图7。主程序实现断路器状态监测、硬件自检、显示处理、键盘处理、指示灯处理和维护口通信等功能;采样中断主要实现数据采集、数据处理和故障处理,通信中断主要实现通信功能。采样中断的优先级高于通信中断优先级。
 
7 程序流程图

3 智能控制器功能分析与技术特点

  (1 智能控制器使断路器的保护功能大大增强,它的三段保护特性中的短延时可设置成I2t特性,以便与后一级保护更好匹配,并可实现接地故障保护。
(2) 智能脱扣器的保护特性可方便地调节,还可设置预警特性。智能断路器可反映负荷电流的有效值,消除输入信号中的高次谐波,避免高次谐波造成误动作。
  (3) 智能控制器能提高断路器的自身诊断和监视功能,可监视检测电压、电流和保护特性。当断路器内部温升超过允许值,或触头磨损量超过限定值时能发出警报。
  (4) 智能断路器具有很高的动作准确性,整定调节范围宽,可以实现过载、断相、三相不平衡、接地、欠压等保护和告警功能。
  (5) 智能断路器通过与控制计算机组成网络后还可自动记录断路器运行情况和实现遥测、遥信和遥控。
  (6) 智能控制器可以设置维护口,更方便断路器的调整维护。可以设置显示模块,实现电流表、电压表、功率表和频率测量的功能。
  (7) 智能控制器可以采用软件校验系统误差,包括增益误差和零点偏移等,真正做到免调试。

4 低压电器技术及市场展望

  今后一段时间低压电器行业的工作重点将集中在以下几个方面:瞄准高新技术,发展我国自主知识产权的环保型、智能化、网络化、可通信化、设计无图化、制造高效化的低压电器产品;改进、完善传统低压电器产品,开发经济适用型产品,巩固传统产品的市场优势;加强可靠性研究,提高国内产品的质量稳定性和可靠性;以知识产权和产品品牌为导向,重组产业结构和产品结构;研制、开发我国第四代智能化、可通信低压电器产品,发展我国低压电器的现场总线,逐步缩短同国外先进水平的差距。重点是优先发展智能化可通信产品和现场总线产品。
  低压电器行业的发展方向决定了塑壳式断路器今后的发展方向是:小型化、高分断、多功能、附件模块化、智能化、可通信、支持现场总线。智能化的塑壳断路器在今后一段时间内的市场潜力十分巨大。


5 小结

  塑壳断路器中引入智能控制器,可使其性能有质的飞跃。它不仅可以更精确、灵活地实现瞬时脱扣、短延时脱扣、长延时脱扣等功能,而且还可以实现接地保护脱扣。智能控制器提供了跟用户更友好的人机界面,可以实现各种故障报警、断路器在线监测,集成电流表、电压表、功率表的功能。智能控制器提供了通信接口,支持现场总线,更适合于低压配、用电网的信息交换,能够实现遥测、遥信和遥控功能。

6 参考文献
   
  [1] 陈德桂.面向21世纪的低压电器新技术.低压电器,2001(1):3-8.
  [2] 陈春,乔巍,叶凡生.基于单片机的智能型低压断路器.电力自动化设备,2003,23(2):49-51.
  [3] 曾庆军,金生福,黄巧亮,等.关于万能式断路器智能控制器.电力自动化设备,2004,24(2):79-83.

本文发布于:2024-09-24 04:22:31,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/33139.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:电流   故障   接地   断路器   线路
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议