LNG气瓶说明书

                  LNG气瓶说明书。               
5.1.1 特性
处理液化天然气的危险主要来自以下三方面特性:
1. 极低温度。在大气压力下按液化天然气组成不同,其沸点略有差别,但都在-162
右,在此低温下液化天然气蒸汽密度大于环境空气。
2. 仅少量液体就能转化为大量气体。1体积液化天然气大致能够转化成600~625体积气体。
3. 天然气是可燃的。一般环境条件下,5~15%(体积,下同)天然气和空气混合是可燃的。这意味着,当空气中天然气的体积分数<5%,或者>15%都不会燃烧,当然也就不会爆炸。
5.1.2 液化天然气的蒸发
5.1.2.1 蒸发气(BOG----boil-off gas)的物理性质
大批量的液化天然气是作为一种沸腾液体储存在绝热的储罐中的。任何传入储罐的热量都将
导致一定量液体蒸发而成为气体,这部分气体称为蒸发气体,其组成与液体组成有关。
5.1.2.2 闪蒸
加压的液化天然气当其压力降至沸点以下时,将有一定量的液体蒸发而成气体,同时液体温度也随之降到其压力下的沸点,此过程称为闪蒸。液化天然气是一种多元混合物,因此闪蒸气组成不同于液体组成。计算闪蒸气及与之相对应的液体组分相当困难,必须借助计算机。以下数据可以作为估算的参考:压力在100~200kPa范围内,1m3处于沸点下的液化天然气降低1kPa压力时闪蒸出的气体量约为0.4kg
5.1.3.1 溢出液体的性质
液化天然气倾倒在地面上时,起初蒸发迅速,然后很快降到某一固定的蒸发速度,固定速度取决于地面吸热性能及可由周围大气中获得的热量。
5.1.3.2 液化天然气的泄漏
液化天然气泄漏到水中产生强烈的对流传热,以致在一定的面积内蒸发速度保持稳定。随着天然气流动泄漏面积逐渐扩大,直到气体蒸发量等于漏出液体所能产生的气体量。
5.1.3.3 气体云团的膨胀与扩散
泄漏的液化天然气刚开始蒸发时产生的气体温度接近于液体温度,其密度大于环境空气。冷
气体在未大量吸收环境空气中的热量之前,沿地面形成一个对流层。当其温度上升至约-113(对纯甲烷)或-82(对甲烷蒸汽)时气体密度就小于环境空气。形成的蒸发气和空气的混合物,在温度继续上升过程中逐渐形成密度小于空气的云团,此云团的膨胀和扩散是一个与风速、大气稳定有关的复杂问题,也要利用数学模型以计算机进行预测。泄漏液化天然气时,由于温度很低,大气中的水蒸气会被冷凝而形成雾团雾团通常是可见的,可以作为可燃性云团的示踪物,指示出云团的区域和范围,实际上由于云团外部边缘的温度已经不足以把水蒸气冷凝,云团的范围要比可见的要大一些。
5.1.4.1 翻滚现象(Rollover
指短时间内有大量气体从液化天然气储罐中散发出来,如果不及时处理,将导致设备超压。液化天然气储罐中有时会形成两个稳定的液层。这是因为新注入的液化天然气与原罐
底剩余部分的密度不同,又没有充分混合,导致下层密度高于上层。当有热量传入储罐时,两个液层之间自发地进行传质和传热,最终完成混合,同时在液层表面进行蒸发。蒸发过程吸收了上层液体的热量而使下层液体处于过热状态。当两层液体的密度接近相等时就会突然迅速混合,在短时间内产生大量的气体,从而使得储罐压力急骤上升,甚至使得安全阀开启。在蒸发过程中,当蒸发出的气体量明显低于其正常水平时,通常是出现翻滚的前兆。
提示:翻滚现象在运动的设备中(槽车、车用气瓶)不会出现,因为运动的设备在运动过程中,使得液体出现分层的条件消失。
5.1.4.2 快速相态转变(RPT
当温度相差悬殊的两种液体接触时,由于快速相态转变可能产生爆炸力。此时,虽然不会出现燃烧现象,但是快速相态转变具备爆炸的其他特征,液化天然气溢入水中而产生的RPT 不太常见,且后果不甚严重。经过实验得出的理论:两种温差极大的液体接触时,如果热液体的温度( K 计)比冷液体沸点温度高1.1 倍,则冷液体温度迅速上升,表面层温度超过自发成核温度(当液体中出现气泡时),此过程热液体能在极短时间内通过复杂
的链式反应机理以爆炸速度产生大量蒸汽,这就是出现RPT的原因。
骨碱性磷酸酶
5.1.4.3 沸腾液体膨胀蒸汽爆炸(Bleve
任何液体在(或接近)其沸点面压力又高于某一数值时,若容器因为故障而突然泄压(比如:
产生较大的裂口),容器内的液体迅速蒸发,剧烈的膨胀可把整个容器推动几百米远。
提示:液化天然气一般贮存在低压容器中,且这类容器都是绝热的,因此蒸发速度不会太高,因而在液化天然气装置中很少出现这种现象。
6.1气瓶简介
气瓶是作为一种用以替代汽车油箱盛装、贮存、供给燃料(液化天然气),并且可以多次重复充装的低温绝热压力容器。其主要结构是双层容器。内胆能够承受一定的压力用来贮存和供给低温液态的液化天然气。在内胆外壁缠绕由玻璃纤维纸和光洁的铝箔组成的多层绝热材料,多层材料在高真空条件下具有热导率低、隔热性能高、重量轻的特点。外壳主
要用来与内胆形成夹层空间(两层容器之间的空间)和把内胆支撑起来的作用。夹层空间被抽成高真空与多层绝热材料共同形成良好的绝热系统,用以延长液化天然气的贮存时间。外壳和内胆之间设置支撑系统将内胆外壳合理固定。支撑系统的设计能够承受车辆在行驶时产生的加速、减速,运行时的振动。气瓶所有的外部管路、阀件都设置在气瓶的一端,并用保护环或保护罩进行防护。阀门系统的设置能够满足液化天然气的充装和供给。内胆设置了两级安全阀(管路系统中)会在内胆超压时起到保护的作用。在超压情况下主安全阀(Svp)(开启压力为1.75MPa250psi)首先打开,其作用泄放由于绝热层和支撑正常的漏热损失导致的压力上升、或真空遭破坏后以及在失火条件下的加速漏热导致的压力上升。副安全阀(Svs)(开启压力为2.9MPa420psi)的压力设定比主安全阀高,在主安全阀失效或发生堵塞时,副安全阀启动。在夹层超压条件下,外壳的保护是通过一个环形的真空塞来实现的。正常情况下,真空塞被大气压压紧在真空塞座内,使大气与夹层空间隔绝,保证夹层的真空度。由于低温液体或蒸汽受热后体积变化比较大,即使少量的低温液体或蒸汽泄漏进入夹层,也会导致夹层压力迅速升高。当夹层压力超过0.17MPa(表压)左右,真空塞将会打开泄压。
设置了经济阀(Er),在使用过程中(长时间停驶除外)经济阀能够优先使用气瓶内胆顶部
由于自然蒸发被汽化而形成的天然气蒸汽,从而降低气瓶内部的压力,使得只要在使用气瓶的压力就不会升至安全阀的开启压力,因而不用放空。还设置了过流阀(Ef),当外部管路发生破裂,管路流量大于设定值时,过流阀自动关闭;当关闭过流阀前的液体使用阀后,过流阀自动回位。通过过流阀自动关闭,从而可以有效避免次生危险的发生。整套系统中的独之处是设置了自增压系统。自增压系统包括:增压截止阀( Pv )、升压调节阀(PBr) 、自增压盘管(Pr )及相应的管路。该系统能够保证且稳定地提供气瓶的正常供液压力和流量的要求,仅仅通过与空气进行热交换,而不需额外的能源。稳定的压力是通过调节升压调
节阀来控制的,当气瓶顶部的压力低于升压调节阀设定的压力(也就是系统需要的压力)时,液化天然气通过增压截止阀和升压调节阀后进入自增压盘管与空气进行热交换,液体变成蒸汽回到气瓶的顶部。由于液化天然气的液气比较大,因此使得压力升高。当压力等于升压调节阀的压力后,升压调节阀自动关闭,气瓶压力不再继续升高。液化天然气汽车燃料系统由气瓶、汽化器、管路降压调压阀、发动机系统组成。汽化器主要是利用发动机循环冷却水把液化天然气进行加热汽化,使天然气达到满足发动机使用温度、流量要求。管路降压调节阀主要作用是将汽化器汽化后的天然气进行减压,使之满足发动机的使用压
力要求,且保持压力稳定。缓冲罐的作用是储备一定量的气体,以备不时之需。当汽车功率较大,启动时需要较多的天然气时,可以在管路降压调节阀后配备一只缓冲罐。如果受到汽车安装空间的限制,且汽车功率不大且供气管路的长度(其作用相当于缓冲罐)满足需要的情况下,可以不用配备此容器。系统中需要配备安全阀(用户自备),安全阀的开启压力要小于或等于图1 所示系统中工作压力最小的设备。电磁阀的作用是当发动机点火开关关闭或处于次要位置、以及发动机熄火点火开关仍处于开启状态时,阀门处于关闭状态能够阻止天然气流向发动机,防止天然气泄漏
6.2.2 流程介绍
6.2.2.1 进液管路
进液管路由低温进液口(C1)、进液单向阀(FCV)以及连接的管道。
2. 进液示意图
加气站用加的机械力量把低温进液口(C1)顶开,液化天然气被加气站装备的低温泵泵入加气管道,由于泵的压力进液单向阀(FCV让爱自由落体)被打开,此时整条进液管路处于开启状
态。
当液体进入过程中,由于喷淋作用,瓶内顶部气相空间的蒸汽会部分被重新液化回收以避免放空损失,使得加液过程中气瓶的压力维持不变甚至降低。当气瓶内部快加满的瞬间,由于液体的不可压缩性,瓶内的压力会迅速升高,达到加气机设定的停机压力时,加气机停止加气,加气的过程完成。由于低温进液口(C1)和进液单向阀(FCV)都只允许流体单相流动(只能流向瓶内,不能流向瓶外),因此停留在低温进液口(C1)和进液单向阀(FCVnordost)之间管道内的液化天然气被汽化成蒸汽后会进入瓶内,不会引起管道超压破裂的危险。
3000m6.2.2.2 自增压管路
自增压管路由增压截止阀(Pv)、升压调节阀(PBr)、自增压盘管(Pr)组成。
3. 自增压示意图
在自增压时,需要保证除增压截止阀(P电脑迷V)外的所有截止阀处于关闭状态,这样气瓶和自增压管路可以形成一个密闭的循环空间。开启增压截止阀(PV),低温液体通过升压调节
阀(PBr),然后经过自增压盘管(Pr)被加热成饱和蒸汽,进入气瓶气相空间(顶部),由于液化天然气的液气比较大,因此输出较少的液体会变成大量的蒸汽,同时这是个密闭的循环空间,也就是说增加的气体体积远远大于输出的液体体积,再有气体具有可压缩性,从而使得气瓶的压力升高。当气瓶压力升至需要的压力(升压调节阀的设定压力)时,升压调节阀(PBr)自动关闭,气瓶压力不再升高,压力维持稳定。
6.2.2.3 出液管路
出液管路由出液单向阀(DCv)、出液截止阀(Vu)、过流阀(Ef)组成。
4. 出液示意图
在没有使用的情况下,出液截止阀(Vu)应当处于关闭状态。汽车进行燃气供给时,开启出液截止阀(Vu),液化天然气通过出液单向阀(DC上海市金汇实验学校V)然后流经出液截止阀(Vu)和过流阀(Ef)进入供气系统。当过流阀Ef的进口的压力与出口的压力差值大于设计的值时,过流阀Ef会迅速关闭停止对外供液。关闭出液截止阀(Vu),过流阀Ef)很快又回到开启状态。

本文发布于:2024-09-22 07:25:56,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/324093.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:天然气   压力   液化   液体   气瓶   气体
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议