引物设计的几点重要原则

PCR引物设计的11条黄金法则
1.引物最好在模板cDNA的保守区内设计。
DNA序列的保守区是通过物种间相似序列的比较确定的。在NCBI上搜索不同物种的同一基因,通过序列分析软件(比如DNAman)比对(Alignment),各基因相同的序列就是该基因的保守区。
2.引物长度一般在15~30碱基之间。
引物长度(primerlength)常用的是18-27bp,但不应大于38,因为过长会导致其延伸温度大于74,不适于TaqDNA聚合酶进行反应。
3.引物GC含量在40%~60%之间,Tm值最好接近72
GC含量(composition)过高或过低都不利于引发反应。上下游引物的GC含量不能相差太大。另外,上下游引物的Tm值(meltingtemperature)是寡核苷酸的解链温度,即在一定盐浓度条件下,50%寡核苷酸双链解链的温度。有效启动温度,一般高于Tm值5~10。若按黑福音
公式Tm=4(G+C)+2(A+T)估计引物的Tm值,则有效引物的Tm为55~80,其Tm值最好接近72以使复性条件最佳。
4.引物3′端要避开密码子的第3位。
扩增编码区域,引物3′端不要终止于密码子的第3位,因密码子的第3位易发生简并,会影响扩增的特异性与效率。
5.引物3′端不能选择A,最好选择T。
引物3′端错配时,不同碱基引发效率存在着很大的差异,当末位的碱基为A时,即使在错配的情况下,也能有引发链的合成,而当末位链为T时,错配的引发效率大大降低,G、C错配的引发效率介于A、T之间,所以3′端最好选择T。
6.碱基要随机分布。
引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错误引发(Falsepriming)。降低引物与模板相似性的一种方法是,引物中四种碱基的分布
最好是随机的,不要有聚嘌呤或聚嘧啶的存在。尤其3′端不应超过3个连续的G或C,因这样会使引物在GC富集序列区错误引发。
7.引物自身及引物之间不应存在互补序列。
引物自身不应存在互补序列,否则引物自身会折叠成发夹结构(Hairpin)使引物本身复性。这种二级结构会因空间位阻而影响引物与模板的复性结合。引物自身不能有连续4个碱基的互补。
两引物之间也不应具有互补性,尤其应避免3′端的互补重叠以防止引物二聚体(Dimer与Crossdimer)的形成。引物之间不能有连续4个碱基的互补。
引物二聚体及发夹结构如果不可避免的话,应尽量使其G值不要过高(应小于4.5kcal/mol)。否则易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。
8.引物5′端和中间G值应该相对较高,而3′端G值较低。
G值是指DNA双链形成所需的自由能,它反映了双链结构内部碱基对的相对稳定性,G值越大,则双链越稳定。应当选用5′端和中间G值相对较高,而3′端G值较低(绝对值不超过9)的引物。引物3′端的G值过高,容易在错配位点形成双链结构并引发DNA聚合反应。(不同位置的G值可以用Oligo6软件进行分析)
9.引物的5′端可以修饰,而3′端不可修饰。
引物的5′端决定着PCR产物的长度,它对扩增特异性影响不大。因此,可以被修饰而不影响扩增的特异性。引物5′端修饰包括:加酶切位点;标记生物素、荧光、、Eu3+等;引入蛋白质结合DNA序列;引入点突变、插入突变、缺失突变序列;引入启动子序列等。
引物的延伸是从3′端开始的,不能进行任何修饰。3′端也不能有形成任何二级结构可能。
10.扩增产物的单链不能形成二级结构。
某些引物无效的主要原因是扩增产物单链二级结构的影响,选择扩增片段时最好避开二级结构区域。用有关软件(比如RNAstructure)可以预测估计mRNA的稳定二级结构,有助
于选择模板。实验表明,待扩区域自由能(G°)小于58.6lkJ/mol时,扩增往往不能成功。若不能避开这一区域时,用7-deaza-2′-脱氧GTP取代dGTP对扩增的成功是有帮助的。
11.引物应具有特异性。
引物设计完成以后,应对其进行BLAST检测。如果与其它基因不具有互补性,就可以进行下一步的实验了。
附:
原教旨主义
值得一提的是,各种模板的引物设计难度不一。有的模板本身条件比较困难,例如GC含量偏高或偏低,导致不到各种指标都十分合适的引物;用作克隆目的的PCR,因为产物序列相对固定,引物设计的选择自由度较低。在这种情况只能退而求其次,尽量去满足条件。
做RealTime时,用于SYBRGreenI法时的一对引物与一般PCR的引物,在引物设计上所要求的参数是不同的。引物设计的要求:
1)避免重复碱基,尤其是G.
2)Tm=58-60度。
3)GC=30-80%.
4)3'端最后5个碱基内不能有多于2个的G或C.
5)正向引物与探针离得越近越好,但不能重叠。
6)PCR扩增产物长度:引物的产物大小不要太大,一般在80-250bp之间都可;80~150bp最为合适(可以延长至300bp)。
7)引物的退火温度要高,一般要在60度以上;
要特别注意避免引物二聚体和非特异性扩增的存在。
而且引物设计时应该考虑到引物要有不受基因组DNA污染影响的能力,即引物应该跨外显子,最好是引物能跨外显子的接头区,这样可以更有效的不受基因组DNA污染的影响。
至于设计软件,PRIMER3,PRIMER5,PRIMEREXPRESS都应该可以的。
做染料法最关键的就是寻到合适的引物和做污染的预防工作。对于引物,你要有从一大堆引物中挑出一两个能用的引物的思想准备---寻合适的引物非常不容易。
关于BLAST的作用应该是通过比对,发现你所设计的这个引物,在已经发现并在GENEBANK中公开的不物种基因序列当中,除了和你的目标基因之外,还有没有和其他物种或其他序列当中存在相同的序列,如和你的目标序列之外的序列相同的序列,则可能扩出其他序列的产物,那么这个引物的特异性就很差,从而不能用。
1.简介
寡聚核苷酸引物的选择,通常是整个扩增反应成功的关键。所选的引物序列将决定PCR产物的大小、位置、以及扩增区域的Tm值这个和扩增物产量有关的重要物理参数。好的引物设计可以避免背景和非特异产物的产生,甚至在RNA-PCR中也能识别cDNA或基因组模板。引物设计也极大的影响扩增产量:若使用设计粗糙的引物,产物将很少甚至没有;而使用正确设计的引物得到的产物量可接近于反应指数期的产量理论值。当然,即使有了好
的引物,依然需要进行反应条件的优化,比如调整Mg2+浓度,使用特殊的共溶剂如二甲基亚砜、甲酰胺和甘油。
计算机辅助引物设计比人工设计或随机选取更有效。一些影响PCR反应中引物作用的因素诸如溶解温度、引物间可能的同源性等,易于在计算机软件中被编码和限定。计算机的高速度可完成对引物位置、长度以及适应用户特殊条件的其他有关引物的变换可能性的大量计算。通过对成千种组合的检测,调整各项参数,可提出适合用户特殊实验的引物。因此通过计算机软件选择的引物的总体“质量”(由用户在程序参数中设定)保证优于通过人工导出的引物。
需要指出的是,引物不必与模板完全同源,因此可包含启动子序列、限制酶识别位点或5’端的各种修饰,这种对引物的修饰不会妨碍PCR反应,而会在以后使用扩增子时发挥作用。
2.基本PCR引物设计参数
引物设计的目的是在两个目标间取得平衡:扩增特异性和扩增效率。特异性是指发生错误
引发的频率。特异性不好或劣等的引物会产生额外无关和不想要的PCR扩增子,在EB染的琼脂糖凝胶上可见到;引物效率是指在每一PCR循环中一对引物扩增的产物与理论上成倍增长量的接近程度。
①引物长度;
特异性一般通过引物长度和退火温度控制。如果PCR的退火温度设置在近于引物Tm值(引物/模板双链体的解链温度)几度的范围内,18到24个碱基的寡核苷酸链是有很好的序列特异性的。引物越长,扩增退火时被引发的模板越少。为优化PCR反应,使用确保溶解温度不低于54的最短的引物,可获得最好的效率和特异性。
总的来说,最好在特异性允许的范围内寻求安全性。每增加一个核苷酸,引物特异性提高4倍;这样,大多数应用的最短引物长度为18个核苷酸。引物设计时使合成的寡核苷酸链(18~24聚物)适用于多种实验条件仍不失为明智之举。
②引物的二级结构
包括引物自身二聚体、发卡结构、引物间二聚体等。这些因素会影响引物和模板的结合从
客户管理系统论文
而影响引物效率。对于引物的3’末端形成的二聚体,应控制其ΔG大于-5.0kcal/mol或少于三个连续的碱基互补,因为此种情形的引物二聚体有进一步形成更稳定结构的可能性,引物中间或5’端的要求可适当放宽。引物自身形成的发卡结构,也以3’端或近3’端对引物-模板结合影响更大;影响发卡结构的稳定性的因素除了碱基互补配对的键能之外,与茎环结构形式亦有很大的关系。应尽量避免3’末端有发卡结构的引物。
③引物GC含量和Tm值
PCR引物应该保持合理的GC含量。含有50%的G+C的20个碱基的寡核苷酸链的Tm值大概在56~62范围内,这可为有效退火提供足够热度。一对引物的GC含量和Tm值应该协调。协调性差的引物对的效率和特异性都较差,因为降低了Tm值导致特异性的丧失。这种情况下引物Tm值越高,其错误引发的机率也越大。若采用太高的退火温度,Tm值低的引物对可能完全不发挥作用。在从一批在特定序列范围内已合成好的寡核苷酸中选择一对新的引物时,这种GC含量和Tm值的协调非常关键。一般来说,一对引物的Tm值相差尽量不超过2~3摄氏度,同时引物和产物的Tm值也不要相差太大,20摄氏度范围内较好。galil
④引物的额外序列与退火温度
2012山东文综若有额外的序列信息要加到引物中,例如T7RNA聚合酶结合位点、限制酶切位点或者GC发夹结构可以使用加长的引物。一般说来,引物5’端添加无关序列不会影响引物特异序列的退火。有时候,引物中添加了大量与模板不配对的碱基,可以在较低退火温度的条件下进行4到5个扩增循环;然后在假定引物5’端序列已经加入到模板中,计算得出的退火温度下进行其余的循环。
在引物上添加限制酶位点时一个重要的考虑是大多数限制酶的有效切割要求在它们的识别序列的5’端有2至3个非特异的额外碱基,这样就会增加引物的非模板特异序列的长度。长引物序列的另一个缺点是影响溶解温度的精确计算,而这对于确定PCR反应时的退火温度又是必须的。对于低于20个碱基的引物,Tm值可以根据Tm=4(G+C)+2(A+T)计算。而对于较长的引物,Tm值需要考虑动力学参数、从“最近邻位”的计算方式得到,现有的PCR引物设计软件大多数都采用这种方式。
⑤引物的3’末端核苷酸组成
电镀铜引物3’末端和模板的碱基完全配对对于获得好的结果是非常重要的,而引物3’末端最后5到6个核苷酸的错配应尽可能的少。如果3’末端的错配过多,通过降低反应的退火温度来补偿
这种错配不会有什么效果,反应几乎注定要失败。

本文发布于:2024-09-24 09:21:43,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/268251.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:引物   序列   扩增
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议