蛋白质测定的主要原理、方法及三聚氰胺的检测方法

蛋白质测定的主要原理、方法及三聚氰胺的检测方法
蛋白质是复杂的含氮有机化合物,相对分子质量很大,大部分高达数百万,它们由20中氨基酸通过酰胺键以一定的方式结合起来,所含的主要化学元素为C、H、O、N,在某些蛋白质中含微量的P、Cu、Fe、I等元素。不同的蛋白质其氨基酸构成比例及方式不同,故各种蛋白质的含氮量也不同。
根据蛋白质的性质和成分,测定蛋白质的方法可分为两大类:一类是利用蛋白质的共性,即含氮量、肽键和折射率等测定蛋白质的含量;另一种是利用蛋白质中特定氨基酸残基、酸、碱性基团和芳香基团等测定蛋白质含量。目前常用的有四种经典方法,即凯氏定氮法,双缩尿法(Biuret法)、Folin-酚试剂法(Lowry法)和紫外吸收法。另外还有一种近十年才普遍使用起来的新的测定法,即考马斯亮蓝法(Bradford法)。其中考马斯亮蓝法(Bradford法)法和Folin-酚试剂法(Lowry法)法灵敏度最高,比紫外吸收法灵敏10~20倍,比双缩尿法(Biuret法)法灵敏100倍以上。定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。
一、常量凯氏定氮法
1.原理:
(1)消化:样品与硫酸一起加热消化,使蛋白质分解分解的氨与硫酸结合生成硫酸铵,留在酸性溶液中。
(2)在消化过程中添加硫酸钾可以提高温度加快有机物分解,它与硫酸反应生成硫酸氢钾,可提高反应温度,一般纯硫酸加热沸点330,而添加硫酸钾后,温度可达400,加速了整个反应过程。此外,也可以加入硫酸钠,氢化钾盐类来提高沸点。其理由随着消化过程硫酸的不断地被分解,水分的逸出而使硫酸钾的浓度增大,沸点增加。加速了有机的分解。但硫酸钾加入量不能太大,否则温度太高,生成的硫酸氢铵也会分解,放出氨而造成损失。
为了加速反应过程,还加入硫酸铜,或硒粉作为催化剂以及加入少量过氧化氢,次氯酸钾作为氧化剂。但为了防止污染通常使用硫酸铜。所以有机物全部消化后,出现硫酸铜的兰绿,它具有催化功能,还可以作为碱性反应指示剂。
货款结算方式3)蒸馏:样液中的硫酸铵在碱性条件下释放出氨,在这操作中,一是加入氢氧化钠溶液要过量,二是要防止样液中氨气逸出。
4)吸收与滴定:蒸馏过程中放出的氨可用一定量的标准硫酸或标准盐酸溶液进行氨的吸收,然后再用标准氢氧化钠溶液反滴定过剩的硫酸或盐酸溶液,从而计算出总氮量。
半微量或微量定氮通常用硼酸溶液吸收后,再用标准盐酸直接滴定,硼酸呈微弱酸性,用酸滴定不影响指示剂变反应,它有吸收氨的作用。 
2.操作步骤:
准确称取样品中0.50-2.00g→于500ml凯氏瓶中→加10g无水K2SO4→加0.5gCuSO4→加20ml H2SO4→在通风橱中先以小火加热,待泡沫消失后,加大火力,消化至透明无黑粒后,将瓶子摇动一下使瓶壁炭粒溶于硫酸中→继续消化30分钟→至到样液呈绿状态,停止消化,冷却→加200ml水→连接蒸馏装置→用硼酸作吸收液→在氏瓶中加波动珠数粒和80ml50% NaOH→立即接好定氮球→加热→至到氏瓶内残液减少到三分之一时,取出用水冲洗→用0.1N  HCl滴定。
3.计算:
总氮量%= (N(V2-V1)×0.014)/W  ×  100
二、双缩脲法(Biuret法)
1.原理:
脲小心加热至150~160 摄氏度时,两个分子的脲脱去一个氨分子生成双缩尿,可于铜离子形成有复合物,成为双缩脲反应。蛋白质分子中含有两个以上的肽键,与双缩脲的结构相似,也由双缩脲反应(而氨基酸中没有此结构),因此,在碱性溶液中蛋白质与二价铜离子(如硫酸铜)形成可溶性的紫复合物(在540~560nm波长范围有最大吸收),在一定范围内,其颜的深浅与蛋白质含量成正比,而与蛋白质的分子质量及氨基酸成分无关。
2.操作步骤:
试剂:(1)甘油作为稳定剂:取10ml10N KOH溶液,3.0ml甘油加到937ml水中,激烈搅拌,同时加入4%CuSO工程结算450ml。
(2)酒石酸钠作稳定剂,吸10ml10N KOH溶液和20ml25%酒石酸钾钠溶液加到930ml水中,激烈搅拌,同时加入4%CuSO4液40ml。
配制以上两种溶液、试剂,必须澄清,无氢氧化铜生成,否则重配。
标准曲线绘制:以采用凯氏定氮法测出蛋白质含量的样品作为标准蛋白质。按蛋白质含量40、50、60、70、80、90、100和110mg分别称取混合均匀的标准蛋白质样与8支50ml纳氏比管中,然后各加入1ml四氯化碳,然后再用试剂(1)或(2)准确稀释至50ml,振摇10分钟,静置1小时,取上层清液离心5分钟,取;离心5分钟,取离心分离后的透明液与比皿中,在560nm波长下一蒸馏水作参比液调节仪器零点并测定个溶液的吸光度,以蛋白质的含量为从坐标,吸光度为横坐标绘制标准曲线。
样品的测定:准确称取样品适量(即使得蛋白质含量在40~110mg之间)于50ml纳氏比管中,加入1ml四氯化碳,按上述步骤显后,在相同条件下测定其吸光度。用所测得的吸光度在标准曲线上即可查得蛋白质mg数,进而求得蛋白质含量。
3.计算
X=(m1*100)/m
式中:X为蛋白质的含量(mg/100g)
      m1为由标准曲线上查得的蛋白质毫克数(mg)
      m为样品质量(g)
三、Folin-酚试剂法(Lowry法)
1.原理
这种蛋白质测定法是最灵敏的方法之一。此法的显原理与双缩脲方法是相同的,只是加入了第二种试剂,即Folin—酚试剂,以增加显量,从而提高了检测蛋白质的灵敏度。这两种显反应产生深兰的原因是:在碱性条件下,蛋白质中的肽键与铜结合生成复合物。‚Folin—酚试剂中的磷钼酸盐—磷钨酸盐被蛋白质中的酪氨酸和苯丙氨酸残基还原,产生深兰(钼兰和钨兰的混合物)。在一定的条件下,兰深度与蛋白的量成正比。
这个测定法的优点是灵敏度高,比双缩脲法灵敏得多,缺点是费时间较长,要精确控制操作时间,标准曲线也不是严格的直线形式,且专一性较差,干扰物质较多。对双缩脲反应发生干扰的离子,同样容易干扰Lowry反应。而且对后者的影响还要大得多。酚类、柠檬酸、硫酸铵、Tris缓冲液、甘氨酸、糖类、甘油等均有干扰作用。浓度较低的尿素(0.5%)
,硫酸纳(1%),硝酸纳(1%),三(0.5%),乙醇(5%),乙醚(5%),丙酮(0.5%)等溶液对显无影响,但这些物质浓度高时,必须作校正曲线。含硫酸铵的溶液,只须加浓碳酸钠—氢氧化钠溶液,即可显测定。若样品酸度较高,显后会浅,则必须提高碳酸钠—氢氧化钠溶液的浓度1~2倍。
进行测定时,加Folin—酚试剂时要特别小心,因为该试剂仅在酸性pH条件下稳定,但上述还原反应只在pH=10的情况下发生,故当Folin一酚试剂加到碱性的铜—蛋白质溶液中时,必须立即混匀,以便在磷钼酸—磷钨酸试剂 被破坏之前,还原反应即能发生。
此法也适用于酪氨酸和氨酸的定量测定。
2.操作步骤:
试剂:
试剂甲:
(A) 10克 Na2CO3,2克 NaOH和0.25克酒石酸钾钠 (KNaC4H4O6•4H2O)。溶解于500毫升蒸馏水中。
中小企业erp
(B) 0.5克硫酸铜(CuSO4•5H2O)溶解于100毫升蒸馏水中,每次使用前,将50份(A与1份(B)混合,即为试剂甲。
(2)试剂乙:
在2升磨口回流瓶中,加入100克钨酸钠(Na2WO4•2H2O),25克钼酸钠(Na2MoO4•2H2O)及700毫升蒸馏水,再加50毫升85%磷酸,100毫升浓盐酸,充分混合,接上回流管,以小火回流10小时,回流结束时,加入150克 硫 酸 锂(Li2SO4),50毫升蒸馏水及数滴液体溴,开口继续沸腾15分钟,以便驱除过量的溴。冷却后溶液呈黄(如仍呈绿,须再重复滴加液体溴的步骤)。稀释至1升,过滤,滤液置于棕试剂瓶中保存。使用时用标准NaOH滴定,酚酞作指示剂,然后适当稀释,约加水1倍,使最终的酸浓度为1N左右。
标准蛋白质溶液:
精确称取结晶牛血清清蛋白或 g—球蛋白,溶于蒸馏水,浓度为250 mg/ml左右。牛血清清蛋白溶于水若混浊,可改用0.9 % NaCl溶液。
(1)标准曲线的测定:
取16支大试管,1支作空白,3支留作未知样品,其余试管分成两组,分别加入0,0.1,0.2,0.4,0.6,0.8,1.0毫升标准蛋白质溶液(浓度为250mg/ml)。用水补足到1.0毫升,然后每支试管加入5毫升试剂甲,在旋涡混合器上迅速混合,于室温(20~25)放置10分钟。再逐管加入0.5毫升试剂乙(Folin—酚试剂),同样立即混匀。这一步混合速度要快,否则会使显程度减弱。然后在室温下放置30分钟,以未加蛋白质溶液的第一支试管作为空白对照,于700nm处测定各管中溶液的吸光度值。以蛋白质的量为横座标,吸光度值为纵座标,绘制出标准曲线。
注意:因Lowry反应的显随时间不断加深,因此各项操作必须精确控制时间,即第1支试管加入5毫升试剂甲后,开始计时,1分钟后,第2支试管加入5毫升试剂甲,2分钟后加第3支试管,余此类推。全部试管加完试剂甲后若已超过10分钟,则第1支试管可立即加入0.5毫升试剂乙,1分钟后第2支试管加入0.5毫升试剂乙,2分钟后加第3支试管,余此类推。待最后一支试管加完试剂后,再放置30分钟,然后开始测定光吸收。每分钟测一个样品。
focusaudio(2)样品的测定:取1毫升样品溶液(其中约含蛋白质20~250微克),按上述方法进行操作,取1毫升蒸馏水代替样品作为空白对照。通常样品的测定也可与标准曲线的测定放在一
起,同时进行。即在标准曲线测定的各试管后面,再增加3个试管。如上表中的8、9、10试管
根据所测样品的吸光度值,在标准曲线上查出相应的蛋白质量,从而计算出样品溶液的蛋白质浓度。
注意反打镜头热处理手册:由于各种蛋白质含有不同量的酪氨酸和苯丙氨酸,显的深浅往往随不同的蛋白质而变化。因而本测定法通常只适用于测定蛋白质的相对浓度(相对于标准蛋白质)。
四、紫外吸收法
1. 280nm的光吸收法
因蛋白质分子中的酪氨酸、苯丙氨酸和氨酸在280nm处具有最大吸收,且各种蛋白质的这三种氨基酸的含量差别不大,因此测定蛋白质溶液在280nm处的吸光度值是最常用的紫外吸收法。
测定时,将待测蛋白质溶液倒入石英比皿中,用配制蛋白质溶液的溶剂(水或缓冲液)
作空白对照,在紫外分光度计上直接读取280nm的吸光度值A280。蛋白质浓度可控制在0.1~1.0mg/ml左右。通常用1cm光径的标准石英比皿,盛有浓度为1mg/ml的蛋白质溶液时,A280约为1.0左右。由此可立即计算出蛋白质的大致浓度。
许多蛋白质在一定浓度和一定波长下的光吸收值(A1%1cm)有文献数据可查,根据此光吸收值可以较准确地计算蛋白质浓度。下式列出了蛋白质浓度与(A1%1cm)值(即蛋白质溶液浓度为1%,光径为1cm时的光吸收值)的关系。文献值A1%1cm,λ称为百分吸收系数或比吸收系数。

本文发布于:2024-09-23 13:16:34,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/264129.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:蛋白质   溶液   标准   测定   硫酸
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议