周期性拉伸(CyclicStretch,CS)之研究应用

周期性拉伸(Cyclic Stretch, CS)之研究应用
I.肺与气管呼吸系统
1.周期性拉伸肺内皮/上皮细胞研究参与呼吸器引发肺损伤ventilator-induced lung injury (VILI)的细胞蛋白和讯息路径:
⏹Connexin 43 [1]; P120 (γ-catenin) [2]; Paxillin [3]; NAMPT [4]; HMGBI [5]; GADD45a [6]
⏹相关药物机制研究: Prostacyclin [7]; Resveratrol [8]; Hypercapnia [9]; Isoflurane [10]; Imatinib [11]
2.周期性拉伸肺血管平滑肌细胞模拟pulmonary vascular remodeling associated with persistent pulmonary hypertension
of the newborn (新生儿肺高血压PPHN) [12]
3.周期性拉伸肺airway smooth muscle (ASM) cells 促进气喘和慢性阻塞性肺病的ATP释放[13, 14]
II.心脏血管循环系统
4.模拟胚胎发育时血流的冲激促进胚胎心脏发育[15]
5.模拟二尖瓣(较其他瓣膜受力大) 受力造成发炎钙化[16]
中宣部6.模拟心律不同步可能促进EMT造成心脏纤维化[17]
7.研究心脏受到压力时
⏹心肌肥大的机制[18]。
⏹活化TNF-α造成心肌细胞凋亡[19]
8.活化bFGF和VEGF,促进血管新生[20]
9.促进血管内皮细胞有序排列,活化atheroprotective signaling [21],防止动脉粥状硬化
⏹醣化胶原蛋白抑制内皮细胞mechanosensing ability,可解释糖尿病病人的外围血管病变[22]
10.模拟高血压促进血管内皮细胞氧化压力(JNK↑, Nox↑, ROS↑, NO↓) [23]
⏹茄红素可降低此氧化压力[24],因此具血管保护效果
11.过度CS活化血管平滑肌细胞[25],造成血管狭窄,支架再狭窄[26]
12.模拟血压影响血管内皮细胞上凝血酶调节素(Thrombomodulin, TM) 之表现与活性[27]
其他与其它的区别
III.骨骼与肌肉系统及结缔组织
13.过度CS抑制蚀骨细胞的凋亡[28] 。
14.过度CS促进造骨细胞的凋亡,释放MCP-3吸引蚀骨细胞[29]。
15.轻微CS 处理骨髓细胞→活化ERK以及osteogenesis相关基因表现[29]。
16.骨骼肌细胞以CS处理→释放可抑制蚀骨细胞的IL-6 [30]。
17.Ossification of the posterior longitudinal ligament (OPLL)韧带骨化之机制研究
⏹CS处理韧带细胞增加osteogenesis 指标蛋白[31, 32]。
⏹可能是由于病变韧带细胞波形蛋白vimentin 表现低落[33]。
⏹与BMP的特定SNP有关[34]。
18.慢性过度使用肌腱病变Chronic overuse tendinopathy取病人肌腱细胞施予CS 会促进血管新生相关基因表现[35]
19.先天性肌失养症Congenital muscular dystrophy对带有laminin A/C 突变的肌原母细胞施予CS →发现Defective
mechanosensing 可能是muscular dystrophy的肌原母细胞无法分化出具功能的骨骼肌的原因[36]
20.对关节软骨细胞施予CS
⏹模拟机械性损耗[37]
⏹模拟良性生理刺激[38, 39]
IV.肾脏与泌尿系统
21.CS促进膀胱平滑肌生长,促进肾纤维化[40]
22.对人类进曲小管上皮细胞HK-2施予CS,活化促进肾纤维化之讯息路径[41]。
23.对肾丝球的足细胞施予CS作为一种环境压迫,会使足细胞释出0.1-1 m大小的微颗粒。同样的微颗粒也可在糖尿
病的动物模式发现,意味尿液中的微颗粒可能可以做为蛋白尿发生前的肾病变的早期指标[42]。
V.干细胞分化
24.诱导高阶干细胞向特定细胞种类分化,在单独或伴随其他因子的情况下,周期性细胞拉伸可:
⏹诱导中胚层干细胞(mesenchymal stem cell, MSC) 分化成血管内皮细胞[43]
⏹诱导胚胎干细胞[44],脂肪组织干细胞(adipose-derived stem cell)及骨髓干细胞[45] 分化成心肌细胞
⏹诱导脂肪组织干细胞参与肌肉分化[46]。
⏹诱导下颔骨髓中的中胚层干细胞及先趋细胞往成骨路径发展[47]。
其他可能研究应用:
⏹促进癌症细胞的EMT?
⏹测试带有神经退化疾病的神经细胞的机械力耐受度?
References
1. O'Donnell, J.J., 3rd, et al., Gap junction protein connexin43 exacerbates lung vascular permeability.
PLoS One, 2014. 9(6): p. e100931.
2. Gu, C., et al., Protective role of p120-catenin in maintaining the integrity of adherens and tight
junctions in ventilator-induced lung injury. Respir Res, 2015. 16: p. 58.
3. Gawlak, G., et al., Paxillin mediates stretch-induced Rho signaling and endothelial permeability via
assembly of paxillin-p42/44MAPK-GEF-H1 complex. FASEB J, 2014. 28(7): p. 3249-60.
4. Sun, X., et al., The NAMPT promoter is regulated by mechanical stress, signal transducer and activator
of transcription 5, and acute respiratory distress syndrome-associated genetic variants. Am J Respir Cell Mol Biol, 2014. 51(5): p. 660-7.
5. Wolfson, R.K., B. Mapes, and J.G. Garcia, Excessive mechanical stress increases HMGB1 expression in
human lung microvascular endothelial cells via STAT3. Microvasc Res, 2014. 92: p. 50-5.
6. Mitra, S., et al., GADD45a promoter regulation by a functional genetic variant associated with acute
lung injury. PLoS One, 2014. 9(6): p. e100169.
7. Meliton, A., et al., KRIT1 Mediates Prostacyclin-induced Protection Against Lung Vascular Permeability
Induced by Excessive Mechanical Forces and TRAP6. Am J Respir Cell Mol Biol, 2015.
8. Dong, W.W., et al., Lung endothelial barrier protection by resveratrol involves inhibition of HMGB1
release and HMGB1-induced mitochondrial oxidative damage via an Nrf2-dependent mechanism. Free Radic Biol Med, 2015.
9. Otulakowski, G., et al., Hypercapnia attenuates ventilator-induced lung injury via a disintegrin and
metalloprotease-17. J Physiol, 2014. 592(Pt 20): p. 4507-21.
10. Englert, J.A., et al., Isoflurane Ameliorates Acute Lung Injury by Preserving Epithelial Tight Junction
Integrity. Anesthesiology, 2015.
11. Letsiou, E., et al., Differential and opposing effects of imatinib on LPS- and ventilator-induced lung
injury. Am J Physiol Lung Cell Mol Physiol, 2015. 308(3): p. L259-69.
12. Wedgwood, S., et al., Cyclic Stretch Stimulates Mitochondrial Reactive Oxygen Species and Nox4
Signaling in Pulmonary Artery Smooth Muscle Cells. Am J Physiol Lung Cell Mol Physiol, 2015: p.
ajplung 00097 2014.
13. Takahara, N., et al., Real-time imaging of ATP release induced by mechanical stretch in human airway
smooth muscle cells. Am J Respir Cell Mol Biol, 2014. 51(6): p. 772-82.
14. Tschumperlin, D.J. and J.M. Drazen, Chronic effects of mechanical force on airways. Annu Rev Physiol,
2006. 68: p. 563-83.
15. Banerjee, I., et al., Cyclic stretch of embryonic cardiomyocytes increases proliferation, growth, and
expression while repressing Tgf-beta signaling. J Mol Cell Cardiol, 2015. 79: p. 133-44.
16. Patel, V., et al., The stretch responsive microRNA miR-148a-3p is a novel repressor of IKBKB, NF-kappaB
signaling, and inflammatory gene expression in human aortic valve cells. FASEB J, 2015. 29(5): p.
1859-68.
17. Mai, J., et al., Dyssynchronous pacing triggers endothelial-mesenchymal transition through
heterogeneity of mechanical stretch in a canine model. Circ J, 2015. 79(1): p. 201-9.
18. Chiu, C.Z., B.W. Wang, and K.G. Shyu, Angiotensin II and the ERK pathway mediate the induction of
leptin by mechanical cyclic stretch in cultured rat neonatal cardiomyocytes. Clin Sci (Lond), 2014.
126(7): p. 483-95.
19. Cheng, W.P., et al., Mechanical Stretch Induces Apoptosis Regulator TRB3 in Cultured Cardiomyocytes
and Volume-Overloaded Heart. PLoS One, 2015. 10(4): p. e0123235.
20. Wilkins, J.R., et al., The interplay of cyclic stretch and vascular endothelial growth factor in regulating
the initial steps for angiogenesis. Biotechnol Prog, 2015. 31(1): p. 248-57.
21. Baeyens, N., et al., Syndecan 4 is required for endothelial alignment in flow and atheroprotective
signaling. Proc Natl Acad Sci U S A, 2014. 111(48): p. 17308-13.
22. Figueroa, D.S., S.F. Kemeny, and A.M. Clyne, Glycated collagen decreased endothelial cell fibronectin
alignment in response to cyclic stretch via interruption of actin alignment. J Biomech Eng, 2014.
136(10): p. 101010.
23. Raaz, U., et al., Hemodynamic regulation of reactive oxygen species: implications for vascular diseases.
Antioxid Redox Signal, 2014. 20(6): p. 914-28.
24. Sung, L.C., et al., Lycopene inhibits cyclic strain-induced endothelin-1 expression through the
suppression of reactive oxygen species generation and induction of heme oxygenase-1 in human umbilical vein endothelial cells. Clin Exp Pharmacol Physiol, 2015. 42(6): p. 632-9.
25. Rodriguez, A.I., et al., MEF2B-Nox1 signaling is critical for stretch-induced phenotypic modulation of
vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 2015. 35(2): p. 430-8.
26. Ghosh, S., et al., Loss of the Mechanotransducer Zyxin Promotes a Synthetic Phenotype of Vascular
Smooth Muscle Cells. J Am Heart Assoc, 2015. 4(6).
27. Martin, F.A., et al., Regulation of thrombomodulin expression and release in human aortic endothelial
cells by cyclic strain. PLoS One, 2014. 9(9): p. e108254.
28. Li, F., et al., Effects of cyclic tension stress on the apoptosis of osteoclasts. Exp Ther Med, 2015. 9(5): p.
强生物流
1955-1961.
29. Matsui, H., et al., The expression of Fn14 via mechanical stress-activated JNK contributes to apoptosis
induction in osteoblasts. J Biol Chem, 2014. 289(10): p. 6438-50.
30. Juffer, P., et al., Mechanically loaded myotubes affect osteoclast formation. Calcif Tissue Int, 2014.
94(3): p. 319-26.
31. Tanno, M., et al., Uniaxial cyclic stretch induces osteogenic differentiation and synthesis of bone
morphogenetic proteins of spinal ligament cells derived from patients with ossification of the posterior longitudinal ligaments. Bone, 2003. 33(4): p. 475-84.
32. Iwasaki, K., et al., Uni-axial cyclic stretch induces Cbfa1 expression in spinal ligament cells derived from
patients with ossification of the posterior longitudinal ligament. Calcif Tissue Int, 2004. 74(5): p.
恩丹西酮448-57.
33. Zhang, W., et al., Down-regulated expression of vimentin induced by mechanical stress in fibroblasts
derived from patients with ossification of the posterior longitudinal ligament. Eur Spine J, 2014. 23(11): p. 2410-5.
34. Li, J.M., et al., Uniaxial cyclic stretch promotes osteogenic differentiation and synthesis of BMP2 in the
C3H10T1/2 cells with BMP2 gene variant of rs2273073 (T/G). PLoS One, 2014. 9(9): p. e106598.
35. Mousavizadeh, R., et al., Cyclic strain alters the expression and release of angiogenic factors by human
tendon cells. PLoS One, 2014. 9(5): p. e97356.
36. Bertrand, A.T., et al., Cellular microenvironments reveal defective mechanosensing responses and
elevated YAP signaling in LMNA-mutated muscle precursors. J Cell Sci, 2014. 127(Pt 13): p. 2873-84. 37. Rosenzweig, D.H., T.M. Quinn, and L. Haglund, Low-frequency high-magnitude mechanical strain of建设部干部学院
articular chondrocytes activates p38 MAPK and induces phenotypic changes associated with
osteoarthritis and pain. Int J Mol Sci, 2014. 15(8): p. 14427-41.
38. Lahiji, K., et al., Cyclic strain stimulates proliferative capacity, alpha2 and alpha5 integrin, gene marker
expression by human articular chondrocytes propagated on flexible silicone membranes. In Vitro Cell Dev Biol Anim, 2004. 40(5-6): p. 138-42.
39. Lee, H.S., et al., Activation of Integrin-RACK1/PKCalpha signalling in human articular chondrocyte
mechanotransduction. Osteoarthritis Cartilage, 2002. 10(11): p. 890-7.
40. Dai, Y., et al., Cyclic stretch induces human bladder smooth muscle cell proliferation in vitro through
muscarinic receptors. Mol Med Rep, 2015. 11(3): p. 2292-8.
41. Hamzeh, M.T., R. Sridhara, and L.D. Alexander, Cyclic stretch-induced TGF-beta1 and fibronectin
expression is mediated by beta1-integrin through c-Src- and STAT3-dependent pathways in renal epithelial cells. Am J Physiol Renal Physiol, 2015. 308(5): p. F425-36.
42. Burger, D., et al., Urinary podocyte microparticles identify prealbuminuric diabetic glomerular injury. J
Am Soc Nephrol, 2014. 25(7): p. 1401-7.
43. Dan, P., et al., The role of mechanical stimuli in the vascular differentiation of mesenchymal stem cells.
微粒算法
J Cell Sci, 2015.
44. Mihic, A., et al., The effect of cyclic stretch on maturation and 3D tissue formation of human
embryonic stem cell-derived cardiomyocytes. Biomaterials, 2014. 35(9): p. 2798-808.
45. Amin, S., et al., Comparing the effect of equiaxial cyclic mechanical stimulation on GATA4 expression in
adipose-derived and bone marrow-derived mesenchymal stem cells. Cell Biol Int, 2014. 38(2): p.
219-27.
46. Kang, K.S., et al., Combined effect of three types of biophysical stimuli for bone regeneration. Tissue
Eng Part A, 2014. 20(11-12): p. 1767-77.
47. Lohberger, B., et al., Effect of cyclic mechanical stimulation on the expression of osteogenesis genes in
human intraoral mesenchymal stromal and progenitor cells. Biomed Res Int, 2014. 2014: p. 189516.

本文发布于:2024-09-21 15:47:30,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/263923.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:细胞   促进   血管   模拟   内皮细胞   施予
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议