细胞骨架(推荐5篇)

细胞骨架(推荐5篇)
第一篇:细胞骨架
第九章:细胞骨架 概念:
细胞骨架:是指存在于真核细胞中,由蛋白质亚基组装而成的纤维网络体系,主要包括微丝微管和中间丝等结构,在维持细胞形态,承受外力、保持细胞内部结构的有序性方面起重要作用,而且还参与许多重要的生命活动。
微丝:微丝又称肌动蛋白丝或纤维状肌动蛋白,指真核细胞中由肌动蛋白组成、直径为7nm的骨架纤维。微丝在细胞生命活动中发挥着重要的作用如细胞的运动,它的空间结构与功能取决于所结合的微丝结合蛋白。
微丝结合蛋白:微丝结合蛋白调节肌动蛋白的组装,通过影响微丝的组装与去组装,介导微丝与其他细胞结构之间的相互作用来决定微丝的组织行为,决定微丝的网络结构与功能,有的还使微丝保持相对稳定的状态。
细胞松弛素:是真菌的代谢产物,与微丝结合后可以将微丝切断,并结合在微丝末端阻抑肌动蛋白在该部位的聚合,但对微丝的解聚没有明显的影响。用细胞松弛素处理细胞破坏微丝的网络结构,可阻止细胞运动。
鬼笔环肽:是一种由毒蕈产生的双环杆肽,与F-actin有强亲和力,不与G-actin结合,对微丝的解聚有抑制作用,可使肌动蛋白丝保持稳定的状态。
微管:是存在于所有真核细胞中的圆柱形中空的管状结构,由微管蛋白组装而成,直径24-25nm。微管结合蛋白:MAPs,与微管密切相关并结合于微管,对微管的结构进行调节并参与微管的功能的蛋白。
秋水仙素:是微管聚合的抑制剂,与微管蛋白亚基结合,使该亚基组装到微管末端后其他的微管蛋白亚基很难再在该处进行组装;但带有秋水仙素的微管对其去组装没有影响,从而导致细胞内微管系统的解体。
紫杉醇:是微管解聚的抑制剂,与微管结合后阻止微管的去组装,增强微管的稳定性,但不影响新的微管蛋白亚基在微管的末端进行组装。
顿悟成佛踏车现象:正极端因组装而延长,负极端则因去组装而缩短,当一端组装的速度和另一端解聚的速度相同时,微管的长度保持稳定,即所谓的踏车现象。
应力纤维:广泛地存在于真核细胞,由肌动蛋白、肌球蛋白、原肌球蛋白和α-辅肌动蛋白组成,微丝反向平行排列,具收缩能力。
微绒毛:是肠上皮细胞的指状突起,用以增加肠上皮细胞表面积,以利于营养的快速吸收。电镜观察由细胞膜和细胞质形成的指状突起,中轴含有纵行微丝,微丝一端附着于微绒毛尖端,另一端伸到细胞顶部,附着与此部胞质中的终末网。
微管组织中心:在活细胞内,能够起始微管的成核作用,并使之延伸的细胞结构成为微管组织中心(MTOC)。
细胞分裂环:在有丝分裂过程中,染体移向两级后细胞质和细胞器要等分为两部分分配到子细胞,胞质收缩环由大量反向平行排列的微丝组成,其收缩机制是肌动蛋白和肌球蛋白的相对滑动。
肌球蛋白:具两个球形头部结构域,具有ATPase活性,多个尾部相互缠绕,形成粗肌丝。
肌钙蛋白:含3个亚基,其中肌钙蛋白-C能与Ca2+结合,肌钙蛋白-T与原肌球蛋白有高度亲和力,肌钙蛋白-I能抑制肌球蛋白马达结构域的ATPase活性。
肌质网:是心肌和骨骼肌细胞中的一种特殊的内质网,其功能是参与肌肉收缩活动。
肌小节:肌原纤维上每一段位于两条z线之间的区域,是肌肉收缩和舒张的最基本单位,它包含一个位于中间部分的暗带和两侧各1/2的明带,合称为肌小节。
山魈魔怪
动力蛋白(Dynein):既能与微管结合又能与膜泡特异性结合,利用水解ATP将化学能转变为机械能,有规则地沿微管负极方向运动运输货物的分子马达。氮化硅
驱动蛋白(Kinesin):既能与微管结合又能与膜泡特异性结合,利用水解ATP将化学能转变为机械能,有规则地沿微管正极方向运动运输货物的分子马达。
思考:
1.试述微丝的组成、装配特点及其主要功能。
MF是由G-actin单体形成的多聚体,肌动蛋白单体具有极性,装配时呈头尾相接,故微丝
具有极性,有正极与负极之别。体外实验表明: MF正极与负极都能生长,生长快的一端为正极,慢的一端为负极;去装配时,负极比正极快。
微丝在体外的聚合需要一定的聚合条件。一般来说,在高盐(一般用钾或钠盐)、镁离子、ATP和一定浓度的G-肌动蛋白的条件下,肌动蛋白趋向于聚合;而在低盐、钙离子和无ATP条件下,微丝趋向于解聚。
微丝聚合过程分为三步:(1)成核(nucleation)(2)延长(elongation)(3)达到表观稳定态。成核过程需有Arp2/3复合物参与。Arp2、Arp3与其他5种蛋白相互作用,形成微丝组装的起始复合体。体内装配时,MF呈现出动态不稳定性,主要取决于F-actin结合的ATP水解速度与游离的G-actin单体浓度之间的关系
主要功能:细胞内微丝组装和去组装的动力学过程与细胞突起(微绒毛、伪足)的形成、细胞质分裂、细胞内物质运输、肌肉收缩、吞噬作用、细胞迁移等多种细胞运动过程相关。细胞皮层功能:①维持细胞形状②参与细胞运动③影响膜蛋白的流动性;应力纤维功能:①介导细胞间或细胞与基质表面的粘着(在形成粘合斑的质膜下,微丝紧密平行排列成束形成应力纤维)②抵抗细胞表面张力,维持细胞形态;此外还在微绒毛的突起和胞质分
裂中染体迁移发挥作用。2.试述骨骼肌收缩的机制。(1)动作电位的产生;(2)Ca2+的释放;(3)原肌球蛋白位移;
龙摄天下
(4)肌动蛋白丝与肌球蛋白丝的相对滑动;(5)Ca2+的回收。
3.举例说明微丝及其结合蛋白在细胞运动中的作用。
细胞运动并不直接涉及肌球蛋白的活动,仅仅是通过肌动蛋白的聚合以及和其他细胞结构组分的相互作用实现的。肌动蛋白的聚合使细胞伸出宽而扁平的片状伪足,内部有大量的微丝存在,其正极端通常位于靠近细胞质膜的部位,存在于该部位的WASP蛋白家族的成员能够激活Arp2/3复合物,导致肌动蛋白的聚合。细胞表面在它运动方向的前端伸出突起;突起与基质之间形成新的锚定位点(如黏着斑),使突起附着在表面;细胞以附着点为支点向前移动;位于细胞后部的附着点与基质脱离,细胞的尾部前移。
4.试述微管的组成、装配特点及其主要功能。
陈醋木耳
组成:①微管是存在于所有真核细胞中的圆柱形中空的管状结构,由微管蛋白(tubulin)组装而成,其直径为24-25nm。
我是凡客
②α-微管蛋白和β-微管蛋白形成微管蛋白异二聚体,是微管装配的基本单位。微管二聚体上有GTP结合部位。  ③微管可装配成单管、二联管(纤毛和鞭毛中)、三联管(中心粒和基体中)。
装配特点: -微管蛋白和β-微管蛋白形成 β二聚体,  β二聚体首先纵向聚合形成短的丝状结构,即成核反应,然后通过在两端以及侧面增加二聚体而扩展为片状,当片状聚合物加宽至13根原纤丝时,即合拢形成一段微管。微管的聚合需要微管蛋白二聚体达到一定的浓度方可进行,这个浓度称为微管聚合的临界浓度。微管在体外的聚合还需要镁离子、GTP和适当的缓冲体系。微管的聚合对温度十分敏感,通常在低温(4℃)下微管发生解聚,而在高温(37℃)下微管聚合。主要功能:维持细胞形态;对细胞结构的组织作用;细胞内的物质运输;鞭毛和纤毛运动;纺锤体和染体运动。5.说明微管及其分子马达在细胞内运输中的作用。
分子马达既能与微管结合,又能与膜泡特异性结合。利用水解ATP将化学能转变为机械能,有规则地沿微管运输货物。分为驱动蛋白(kinesin,朝微管的正极方向运动)和胞质动力蛋白(cytoplasmic dynein,朝微管的负极运动)。驱动蛋白球状的头部具有ATP结合
部位和微管接合部位。驱动蛋白分子沿微管轨道运输小泡,步行位移,从负极到正极。动力蛋白激活蛋白复合体:介导胞质动力蛋白与“货物’间的结合。
6.说明细胞骨架在细胞分裂中的作用。
当细胞从间期进入有丝分裂期,间期细胞微管网络解聚为游离的αβ-微管蛋白二聚体,再重组装形成纺锤体,介导染体的运动;分裂末期,纺锤体微管解聚,有重组装形成胞质微管网络。纺锤体微管可分为:(1)动粒微管:连接染体动粒与两级的微管;
(2)极微管:从两级出发,在纺锤体中部赤道区相互交错重叠的微管;(3)星体微管:中心体周围呈辐射分布的微管。
在有丝分裂过程中染体的运动有赖于纺锤体微管的组装和去组装。在这一过程中动粒微管与动粒之间的滑动主要是靠结合在动粒部位的驱动蛋白和动力蛋白沿微管的运动来完成。极微管在纺锤体的中部交错重叠,有些分布在极微管之间特殊的驱动蛋白成员如CIK1和CIN1等双极马达蛋白,其中2个马达结构域沿一条微管运动,另2个马达结构域沿另一条微管运动。由于重叠的2条微管分别来自两极,故极性相反。当双极驱动蛋白四聚体沿微管正向运动时,纺锤体两极间的距离延长。反之缩短。

本文发布于:2024-09-21 14:36:16,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/243071.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:微管   细胞   微丝   蛋白   运动   结合   形成
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议