FLUENT算例(4)

FLUENT算例(4)
Fluent算例
课程:计算流体力学
脂松香题目:FLUENT软件不同辐射模型
的运用
因热而发出辐射能的现象称为热辐射。辐射与吸收过程的综合结果就造成了以辐射方式进行的物体间的热量传递――辐射换热。辐射换热是高温条件下换热的主要机制,黑体单位时间内发出的辐射热量与导热、对流换热量相比比较大时,应考虑辐射换热。FLUENT可以计算的辐射换热问题包括火焰辐射,表面的辐射加热或冷却,辐射、对流和热传导的耦合换热问题,空调、通风设备中通过窗户的辐射换热,汽车车厢内的热交换分析,玻璃加工、玻璃纤维拉丝和陶瓷加工过程中的辐射换热问题。这五种模型分别是离散换热辐射模型(DTRM)、P-1辐射模型、rosseland辐射模型、表面辐射模型S2S和离散坐标(DO)辐射模型。实例:在边长为1m的正方形容器,右侧壁面温度为20XX年K,左侧壁面温度为1000K,
52
上下壁面均为绝热。重力方向向下,重力加速度设为6.96 10m/s;容器内部
Fluent算例
43
C 1.1030 10J/(Kg K),kg/mP的介质密度为1000的流体介质,其定压比热  3
10kg/(m s),热传导率k 15.309w/(m k)。流体的介质普朗特粘性系数5
p 0.71R 5 10数r,基于特征长度,方腔长度L的瑞利数a,普朗克数P1 0.02(特征温度取冷热壁面温度的平均值)。由于传热引起的密度梯度产生了浮力驱动流动。壁面为黑,介质具有吸收和发射性质,增强了介质与壁面之间的辐射热交换。
利用GAMBIT建立计算区域和指定边界条件类型1、创建控制区域(1)创建点(2)创建边(3)创建面2、网络划分(1)边的网络划分(2)面的网络划分
网络划分图3、边界条件类型的指定
添加边界的名称、类型及对应的几何单位:edge1.2.3.4的边界名称分别为
Fluent算例
left,right,top,bottom,边界条件的类型为WALL。4、mes件的输出
生成“sh"的网络文件。一、利用Rosseland辐射模型求解
Rosseland模型中的速度矢量图
Fluent算例
流函数等值线图
不考虑辐射时的流函数等值线图
温度分布图
Fluent算例
不考虑辐射的温度分布容器水平线上Y方向速度的显示1、首先创建y=0.5的水平直线2、直线y=0.5上Y方向速度的显示。
Rosseland模型中水平中心线Y方向速度曲线左右壁面的传热率的计算
点击report,fluxes,打开Flux Reports对话框,选中Options项下的Total Heat
Fluent算例
Transfer Rate选项,选中Boundaries下的Left 和right,然后单击Compute图标,设置如下图所示
左右壁面总的传热率均接近*****W 二、利用P-1辐射模型进行求解P-1迭代过程
大型纺织厂
Fluent算例
P-1模型中的速度矢量图
水平中心线上的Y方向速度显示。
P-1模型水平中心线Y方向速度曲线左右壁面总传热面积的计算
干墙Fluent算例
左右壁面总传热率设置及计算结果对话框右侧壁面总的传热率约为*****W 三、利用DTRM辐射模型进行求解
DTRM迭代过程
谭旭光博客
Fluent算例
DTRM模型中的速度矢量图
过敏疹DTRM模型中水平中心线Y方向速度曲线左右壁面传热面积
sybFluent算例
左右壁面总传热率设置及计算结果对话框四、利用DO辐射模型进行求解
DO迭代过程
Fluent算例
DO模型中的速度矢量图
DO模型中水平中心线Y方向速度曲线
Fluent算例
左右壁面总传热率计算结果比较上述四个模型计算的水平中心线上的Y方向的速度
由以上图可知P-1、DTRM和DO模型计算结果几乎相同,尽管他们计算的壁面传热率不同;因为对于小的光学厚度,速度场独立于辐射场,而P-1、DTRM和DO模型采用与不考虑辐射相近的求解流场的计算方法,可以看出Rosseland模型不适合小的光学厚度下求解。

本文发布于:2024-09-23 05:21:51,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/238488.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:辐射   模型   壁面   换热   速度   传热   方向
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议