非对称循环载荷下Q235钢力学响应特性分析

第42卷第4期
2021年4月
哈㊀尔㊀滨㊀工㊀程㊀大㊀学㊀学㊀报Journal of Harbin Engineering University
Vol.42ɴ.4
Apr.2021
非对称循环载荷下Q235钢力学响应特性分析
张庆玲1,2,金淼1,2,李1,2
,郭宝峰1,2
(1.燕山大学先进锻压成形技术与科学教育部重点实验室,河北秦皇岛066004;2.燕山大学机械工程学院,河北秦皇岛
066004)
摘㊀要:为了准确判断Q235钢在非对称应力循环载荷作用下产生的棘轮效应㊁包申格效应及循环软/硬化特性对材料性能的影响,本文进行了多种非对称应力条件下的循环加载试验㊂采用数据分析的方法,研究了Q235钢力学变形行为与加载工况之间的关系㊂试验表明:Q235钢棘轮应变和棘轮应变率的正负与平均应力符号相同;平均应力为负值时,表现为循环硬化特性,压缩屈服应力大于拉伸屈服应力;平均应力为正值时,表现为循环软化特性,拉伸屈服应力大于压缩屈服应力;在平均应力符号相同条件下,第1周的屈服应力也基本相同㊂研究结果为结构设计和建立精确的循环本构模型提供了理论依据㊂
关键词:非对称循环载荷;包申格效应;循环软硬化;棘轮效应;屈服应力;Q235钢;平均应力;应力幅值
DOI :10.11990/jheu.201905041
网络出版地址:http ://wwwki /kcms /detail /23.1390.u.20210302.1345.014.html 中图分类号:TB31㊀文献标志码:A㊀文章编号:1006-7043(2021)04-0581-07
奇人趣事Analysis of the mechanical response characteristics of Q 235
steel under asymmetrical cyclic loading
ZHANG Qingling 1,2
,JIN Miao 1,2
,LI Qun 1,2
,GUO Baofeng 1,2
(1.Key Laboratory of Advanced Forging &Stamping Technology and Science (Yanshan University),Ministry of Education of China,
Qinhuangdao 066004,China;2.School of Mechanical Engineering,Yanshan University,Qinhuangdao 066004,China)
Abstract :To accurately determine the effects of the ratcheting effect,Bauschinger effect,and cyclic softening and hardening characteristics of Q235steel on the material properties under asymmetric cyclic stress loading,we con-duct various cyclic loading tests under asymmetric stress conditions.The relationships between the mechanical de-formation behaviors of Q235steel and loading conditions are discussed by means of data analysis.The test shows that the positive and negative signs of ratcheting strain and ratcheting strain rate of Q235steel are the same as those of t
he mean stress.When the mean stress is negative,it shows a cyclic hardening characteristic,and the compres-sive yield stress is greater than the tensile yield stress.When the mean stress is positive,it shows a cyclic softening characteristic,and the tensile yield stress is greater than the compression yield stress.Under the condition of the same mean stress sign,the yield stress of the first cycle is basically the same.Results provide theoretical data for the structural design and the establishment of an accurate cyclic constitutive model.
Keywords :asymmetric cyclic loading;Bauschinger effect;cyclic softening and hardening;ratcheting;yield stress;Q235steel;mean stress;stress amplitude
山东省警官培训学院收稿日期:2019-05-13.网络出版日期:2021-03-02.基金项目:国家自然科学基金项目(52075474);河北省自然科学基金
项目(E2019203560);河北省高校创新团队领军人才培育计划(LJRC012).
作者简介:张庆玲,女,高级实验师,博士研究生;
金淼,男,教授,博士生导师.
通信作者:金淼,E-mail:jmiao@ysu.edu.
㊀㊀工程中的承载结构在工作中常由于载荷或几何形状不连续而产生应力集中,甚至会在局部出现塑性变形㊂此时,对于受循环载荷作用的结构件则可能出现棘轮效应㊁包申格效应㊁循环软/硬化等变形
行为,从而影响结构性能㊂因此,深入了解材料在循环载荷作用下的力学相应特性对于结构设计及安全评定具有十分重要的意义㊂棘轮应变会随着循环次数的增加而增加,会严重恶化部件的性能[1]㊂棘轮应变的累积取决于载荷中平均应力和应力幅值的组合[2-3]㊂在恒平均应力时,无论应力速率如何变化,随应力幅值的增加,棘轮寿命都会下降,棘轮应变累积率增加[4-6]㊂这些研究使人们对金属材料棘轮效应的基本特性有了较为深入的了解㊂
哈㊀尔㊀滨㊀工㊀程㊀大㊀学㊀学㊀报第42卷
包申格效应是指金属材料在经历了一定量的单向拉伸或压缩塑性变形之后再反向加载,其屈服应力会低于连续正向变形的屈服应力,这是造成金属材料力学方向性的重要原因之一[7-9]㊂盛光敏等[10]通过对AZ31进行拉压和压拉循环试验,得出其包申格效应比反包申格效应明显;文献[11-12]分析了不同应变历史㊁预应变量㊁应变速率和循环周次对铝合金7A04和高强钢10CrNi5MoV 包申格效应的影响;文献[13-14]对Q345㊁Q460和Q235进行循环加载试验,指出3种钢材均存在包申格效应㊂
电力自动化设备
当外加循环载荷使得材料进入塑性变形后,反复变形会令金属的塑性流动特性发生变化,造成材料抵抗变形的能力增强或减弱,这种现象称为循环硬化或循环软化㊂文献[15]探讨了不同加载条件下不锈
钢316L 的循环软硬化行为;文献[16-18]指出低碳钢S355循环硬/化行为随塑性应变范围的增大而增大,循环软化行为随塑性应变范围的减小而减小;文献[19-21]研究发现Q235钢在不同应变幅值和平均应变组合下表现为循环硬化,循环硬化指数随平均应变水平的增加而增大㊂
学者们对不同材料在不同条件下的循环变形特性进行了深入探讨,但对于焊接结构件最为常用的Q235钢在非对称应力控制下产生棘轮效应㊁包申格效应及循环软硬化特性的系统研究却鲜见报道㊂本文以Q235钢为研究对象,进行了多种条件下的循环加载试验,运用数据分析的方法,并结合唯象理论,对试验结果进行系统分析,深入研究了此材料的力学响应特性㊂
1㊀应力循环加载试验方案
试验所用原材料为20mm 厚Q235钢板,测得其弹性模量为210GPa,上㊁下屈服极限分别为310MPa 和243MPa㊂沿轧制方向取样,按照GB /T 3075-2008‘金属材料疲劳试验轴向力控制方法“加工成圆形截面循环加载试样,其平行段直径9mm,平行段长度27mm,过渡圆弧半径25mm㊂在精度为0.2kN 的Instron8801型电液伺服疲劳试验机上进行循环加载试验,并通过精度为0.1μm,标距为25mm 的接触式引伸计采集轴向应变㊂试验加载波形如图1所示,加载应力率为40MPa /s,循环周次为30周,具体试验方案如表1所示
图1㊀应力循环加载曲线
Fig.1㊀Single stage stress cyclic loading curves
表1㊀应力循环试验加载工况
Table 1㊀Loading conditions of stress cycle test
试样编号平均应力/MPa
应力幅值/MPa
FYL-01-20300FYL-02-20320FYL-03-20340FYL-04-40300FYL-05-60300ZYL-0920300ZYL-1020320ZYL-1120340ZYL-1240300ZYL-13
60300
2㊀棘轮效应分析
本文材料在非对称应力循环载荷作用下产生的棘轮应变εr 为:
εr =(εT max +εT min )/2
(1)式中εT max ㊁εT
min 分别表示某一个循环周次的最大真应变和最小真应变㊂如无特殊说明,本文所涉及应变均为真应变㊂
由于Q235钢存在屈服平台,使得第1周的应变值较大,棘轮应变的计算均从第2周开始㊂将相
邻2个循环周次内棘轮应变的变化量定义为棘轮应变率Δεr ,其反映了循环加载过程中棘轮应变累积的快慢程度㊂
应力幅值为300MPa,平均应力分别为-20MPa 和20MPa 时,循环加载过程中Q235钢的应力应变曲线如图2所示㊂可以看出,正㊁负平均应力时均产生了棘轮效应㊂当平均应力为负值时,随循环周次的增加,滞回曲线向负应变方向移动;当平均应力为正值时,滞回曲线则向正应变方向移动㊂
应力幅值为300MPa,不同平均应力条件下棘轮应变随循环周次的变化如图3所示㊂由图可知,平均应力为正值时棘轮应变为正值,平均应力为负值时棘轮应变为负值,棘轮应变的绝对值均随循环周次增加而增大㊂不同正负平均应力条件下棘轮应变的变化趋势不同,且棘轮应变率也不相同,但棘轮应变率均在第20周后趋于稳定㊂
平均应力为正值时,棘轮应变率为正值,平均应力越大,棘轮应变率越高;平均应力为负值时,棘轮应变率为负值,平均应力绝对值越大,棘轮应变率也越高㊂应力幅值为300MPa 时,棘轮应变率稳定值
285㊃
第4期张庆玲,等:非对称循环载荷下Q235钢力学响应特性分析
与平均应力之间的关系曲线如图4所示,两者之间呈指数函数关系
图2㊀循环应力应变曲线Fig.2㊀Cyclic stress-strain
curve
图3㊀应力幅值为300MPa 时的棘轮应变
北医三院产妇事件
Fig.3㊀Ratcheting strain at stress amplitude 300
MPa
图4㊀应力幅值为300MPa 时不同平均应力下的棘轮应变率
Fig.4㊀Ratcheting strain rate under different mean stress
at stress amplitude 300MPa
㊀㊀图5所示为不同应力幅值下Q235钢的棘轮应变曲线㊂无论平均应力为正值还是负值,棘轮应变及棘轮应变速率均随应力幅值的增加而增大㊂
由上述分析可知,Q235钢在循环过程中产生的棘轮应变与平均应力㊁应力幅值和循环周次有关,根据唯象理论得出棘轮应变的预测模型:
εr =10-4λησm σᶄs0
-σs0exp(η)N +εᶄη,σm >010-4
λσm
(σᶄs0-σs0)η
exp(η)N -εᶄη,σm <0ìîíïïïïïï(2)式中:λ为材料参数,可通过试验数据获取,此处取λ=3.5;N 为循环周次;σm 为平均应力;σa 为应力幅值;σᶄs0㊁σs0分别为单向拉伸时的上㊁下屈服极限;η=σa /σs ;εᶄ为循环加载试验时应力峰值在单向拉伸试验曲线中所对应的应变值
图5㊀不同应力幅值条件下的棘轮应变
Fig.5㊀Ratcheting strain at different stress amplitude
如图6所示,将计算得到的棘轮应变与试验数据进行对比,两者吻合良好,说明该公式可以在非对称应力控制的循环加载试验中,较好的表征Q235钢的棘轮效应
图6㊀棘轮应变试验值与拟合值比较
Fig.6㊀Comparison of test and fitting data of ratcheting
stress
385㊃
哈㊀尔㊀滨㊀工㊀程㊀大㊀学㊀学㊀报第42卷
3㊀包申格效应分析
包申格效应在金属材料构件中一般扮演着负面的角,会影响到材料的抗疲劳性能,造成工件不能满足正常的服役条件㊂试验发现,Q235钢在循环加载过程中产生了明显的包申格效应㊂为使计算结果更有可比性,在循环第1周取屈服平台的值作为屈服应力,其他不产生屈服平台且无明显屈服点的循环周次,取相应周次发生0.2%相对塑性变形时对应的应力值,即取该周应力应变曲线起始部分的斜
率,然后偏移0.2%应变量对应得到的应力值㊂
图7给出了应力幅值为300MPa,不同平均应力条件下的屈服应力随循环周次的变化曲线㊂图中显示,当平均应力为负值时,压缩屈服应力大于拉伸屈服应力,平均应力绝对值越大,拉伸屈服应力越小,压缩屈服应力越大;而当平均应力为正值时,拉伸屈服应力大于压缩屈服应力,平均应力越大,拉伸屈服应力越大,压缩屈服应力越小㊂且随循环周次的增加无论平均应力为正值还是负值,拉伸和压缩方向的屈服应力均呈现下降趋势
图7㊀不同平均应力条件下屈服应力随循环周次变化曲线
Fig.7㊀Changing curves of yield stress with cycle numbers at different mean stresses
㊀㊀图8为相同平均应力不同幅值条件下各循环周次的屈服应力㊂结合图7的结论,可以得出,在应力载荷控制下,在拉伸和压缩2个方向哪个方向载荷大,对应方向的屈服应力相对较高㊂平均应力一定时,随应力幅值的增大,拉伸屈服应力和压缩屈服应力均略有增大,在循环到第30周时相邻载荷条件下的屈服应力相对变化量不超过2%㊂对比图7和图8,可以看出,平均应力和应力幅值
分别增大所得到的屈服应力变化规律并不一致,相同峰值条件下,平均应力比应力幅值对屈服应力的影响更为明显㊂这是因为,平均应力为负值时,平均应力增大,应力峰值减小,应力谷值绝对值增大;平均应力为正值时,平均应力增大,应力峰值增大,应力谷值绝对值减小;而应力幅值增大,正负平均应力下的应力峰值和应力谷值的绝对值均增大
图8㊀不同应力幅值下的屈服应力变化曲线
Fig.8㊀Changing curve of yield stress at different stress amplitude and same mean stresses
非诚勿扰 英国专场㊀㊀从上述对屈服应力的数据分析可以得出,屈服应力是关于循环周次㊁平均应力和应力幅值的函数㊂
当外加载荷大于上屈服极限时,屈服应力σs 随循环周次的演化规律为:
k2summitσs =
σi ,
N =1(μ+λi )σi ηM
i
N
,
N >1
{
(3)
式中:i =1,2分别代表拉伸和压缩;σi 为第1周屈服应力值,平均应力为正值时,拉伸屈服应力为289MPa,
485㊃
第4期
张庆玲,等:非对称循环载荷下Q235钢力学响应特性分析
压缩屈服应力为189MPa;平均应力为负值时,拉伸屈服应力为191MPa,压缩屈服应力为320MPa;λi 为材料参数,通过试验获取,平均应力为正值时,λ1
取0.78,λ2取1.10;平均应力为负值时,λ1取0.87,λ2取1.15;μ=
σm
σᶄs0;M i 为指数指标,M 1=
10σm ησP
,
M 2=
10σm
σP
,σp 为应力峰值㊂将计算得到的屈服
应力与试验值进行比较,如图9所示㊂不同正负平均应力条件下,两者在初始几个循环周次相差较多,最大相对误差为5%,但在10周之后最大相对误差仅为2%,说明拟合效果良好
图9㊀屈服应力试验值与拟合值比较
Fig.9㊀Comparison of test data and fitting data about yield stress
㊀㊀包申格系数B 与循环载荷作用下预拉伸/压缩
变形后屈服应力的变化直接相关,可对包申格效应进行定量表征和描述,其表达式为:
B =σ-0.2-σ+0.2σ-0.2
,σm <0σ+0.2-σ-0.2
σ+0.
2,σm >0ìî
íïïïïïï(4)式中:σ+0.2㊁σ-0.2分别为材料的拉伸和压缩屈服应
力㊂屈服应力下降越大,包申格系数越高,包申格效应越明显㊂Q235钢在幅值为300MPa,不同平均应力下包申格系数的变化如图10所示
图10㊀应力幅值为300MPa 时包申格系数随循环周次的
变化
Fig.10㊀The variation of Bauschinger coefficient with cycle
numbers at stress amplitude 300MPa
可以看出,不同应力状态第1周时的包申格系
㊀㊀
数基本相同,约为0.346,说明Q235在经历一定的预拉伸/压缩变形后再反向压缩/拉伸时均表现出明显的包申格效应㊂从第2周开始,包申格系数随平均应力的变化表现出较大差异,但相同应力条件下则变化很小㊂因此,可以用第2周的包申格系数来描述材料的包申格效应㊂平均应力绝对值越大,包申格效应越显著㊂平均应力绝对值相同时,Q235钢在正平均应力条件下表现出的包申格效应更明显㊂
4㊀循环软/硬化特性分析
Q235钢在不同应力组合条件下表现出不同的循环软/硬化行为㊂不同平均应力和应力幅值条件下的响
应应变幅值随着循环周次的变化曲线如图11所示㊂可以看出,当平均应力为负值时,表现出轻微的硬化特性;当平均应力为正值时,则表现出明显的软化特性,但2种工况下,应力幅值越大应变幅值越大,而平均应力绝对值越大应变幅值却越小㊂随循环周次的增加,Q235钢循环软/硬化速率在第20周之后趋于稳定㊂将不同应力条件下的循环软/硬化速率稳定值列于表2,负值表示循环硬化,正值表示循环软化㊂
比较发现,负平均应力时,循环硬化速率随平均应力绝对值的增大逐渐减小,即硬化程度减弱;正平均应力时,循环软化速率随平均应力的增大呈增长趋势,即软化程度增强;应力幅值增大使循环软硬化速率均增加,软硬化程度更显著㊂
585㊃

本文发布于:2024-09-21 18:35:34,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/237106.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:应力   循环   应变   棘轮   屈服应力
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议