废催化剂的回收与利用

催化剂的回收与利用
资料来源:  2012-4-12
铑催化剂在化学工业中已广泛应用,例如可用 于催化羰基合成、烯烃氢甲酰化反应、甲醇羰基化 合成醋酸、醋酸甲酯羰基化合成醋酐、不对称氢化 (加氢)、不对称烯烃异构化等。上述反应中所用铑 膦络合催化剂具有反应条件温和、活性高、可溶于 有机溶剂、容易提纯、固体在空气中稳定、存贮运 输方便等优点。在工业生产操作中,铑膦络合催化 剂很容易受微量杂质影响而中毒失活。因为铑催化 剂制备过程复杂,价格昂贵,随着铑在国际市场上 价格日益上涨,从废料中回收铑已引起许多国家的 重视。所以了解铑催化剂失活的原因、机理以及寻 防止其失活的方法,对稳定催化剂的活性、延长 使用寿命、降低铑的消耗具有重要意义[1]。本文 介绍了铑膦配合物催化剂的失活机理、再生工艺及铑的回收方法。
1 羰基合成用催化剂体系及催化中原钢结构论坛
剂失活机理 低压铑膦羰基合成工艺采用乙酰丙酮三苯基膦 羰基铑(简称ROPAC)作为催化剂母体,过量的三 苯基膦为配位体,丁醛三聚物及其它高沸物为溶 剂,ROPAC在过量三苯基膦存
在的氢甲酰化条件 下,迅速脱除掉乙酰丙酮基,而成为具有催化活性 的一组络合物HRh(CO)n(PPh3)4- n(n=1,2,3)催 化体。一般认为其失活机理为“某些物质可以导致ROPAC催化剂中毒”使其丧失活性。这些物 质可分为永久性的和可去除的两类, 后者常称为催 化剂的抑制剂。氧、氯、硫等物质与中心铑离子直 接配位占据络合中心,导致催化剂活性结构被破 坏,由它们引起的催化剂中毒是不可再生的 [1]。 铑膦催化剂的抑制剂2-乙基己烯醛(EPA)、丙基 二苯基膦(PDPP)等,与烯烃竞争配位,同样也降低 了催化活性。但这类物质与铑形成的配位键比永久 性中毒物弱了许多,配位后还可逆转,去除抑制剂 后催化剂的活性可得到再生[2]。此外,内部失活, 即新鲜催化剂在氢甲酰化条件下转化为 Rh3、Rh4 簇化合物,Rh4簇化合物活性仅为Rh3簇化合物的 30%或更低,也是造成催化剂中毒的原因。产生内 部失活的原因在于操作条件的影响,低的反应温度 和有一氧化碳存在,及高的三苯基膦与催化剂中铑 金属的摩尔比,可使催化剂内部失活速度降低,催 化剂更稳定。
2 ROPAC催化剂再生技术雅兹迪族
2·1  催化剂抑制剂的脱除及催化剂的再生该工艺在工业操作过程中采用刮板式薄膜蒸发 器(WFE),将真空蒸发与空气处理结合起来。即 将含铑 3×10-4%~4×10-4%质量分数的失活催
化剂有机溶液(活性<30%)经WFE两次真空蒸发 得到含铑约为0·08%质量分数的溶液,然后加入 一部分第二次蒸发得到的馏出液,将其稀释至 0·006%质量分数,向其中通入脱除硫、氯的洁净 空气,这样处理37d,最后再加入适量的三苯基膦 (TPP),使催化剂系统稳定并使其中的铑含量为6 ×10-4%质量分数,即可返回到反应器中使用。经 处理再生的催化剂活性约为新鲜催化剂活性的 75%~90%,铑损失率约1%。UCC-DAVY- JohnsonMattey(U·D·J)工艺中的催化剂可进行7次 再生,延长了催化剂的使用寿命3]。
2sst华塑·2 内部失活催化剂的再生技术
美国联碳公司的专利[4]中报道了一种对内部 失活催化剂再活化的方法。该方法将使用一年以 上,活性低于30%(以新鲜催化剂的活性为标准) 的铑催化剂溶液用WFE在真空下浓缩,浓缩过程 中将部分溶剂 (丁醛三聚物)及三苯基膦蒸出,残 留物中铑浓度为0·8%~1%质量分数。该残留液 经用5%碳酸纳洗涤,水洗、干燥后,加入到连续进气的丙烯氢甲酰化循环反应器中,在105℃,总 压强约1585kPa,1mol铑对应60mol三苯基膦,三 苯基膦与一氧化碳、氢气的摩尔比为1∶1∶1,处理 1d 之后催化剂的活性即可恢复至新鲜催化剂的 70%,可将其返回氢甲酰化系统继续使用,这种再 生可以反复进行几次,延长了催化剂的使用周期。
3 回收技术简介
3·1 萃取法
EastmanKodak 公司的专利[5]报道了从酯酸甲 酯羰基化制备体系中回收铑催化剂的方法。 该法是向含铑催化剂的焦油中加入等量二氯甲烷和 HI的水溶液,再向其中加入28%的氨水,剧烈摇 动30s,静置10min,分层,铑催化剂在水相,反 复萃取2次,铑回收率可达98%。此含催化剂的 水溶液可直接返回醋酸甲酯羰基化反应装置中继续 使用。
3·2火力发电厂设计技术规程 沉淀法[6]
将氢甲酰化反应后的物料中的丁醛蒸出,蒸馏 塔底馏分在氮气或一氧化碳气氛中,用含甲醛和盐 酸的水溶液处理。所得混合物煮沸15min后,塔底 馏分中的铑—膦络合物生成溶解度相当低的 RhC (CO)(PPh3)2沉淀;同时含甲醛的酸性水溶液与塔 底馏分中的三苯基膦生成膦盐形式的产物而溶于水 中。过滤得到RhCl(CO) (PPh3)2沉淀,铑回收率 为96%。滤液静止分层后,用倾析法分出水层,向 该水溶液中加碳酸钠至呈碱性,使膦盐转化成固体 的三苯基膦。过滤、水洗、真空干燥,得到三苯基 膦可重新使用,回收率>90%。
3·3 浸没燃烧法
三菱公司[7]以铑-膦络合物为催化剂生产2- 乙基己醇的装置是用蒸馏法分离出含铑-膦催化剂 的溶液再送回氢甲酰化反应器循环使用。由于在循 环使用过程中,催化剂活性会降低;同时高沸点的 副产物逐渐积累,因而必须放出部分催化剂溶液, 以除去其中的高沸物并对催化剂进行再生处理。处 理回收铑方法:从氢甲酰化反应产物中蒸出醛后, 塔底馏分蒸发浓缩,浓缩后的溶液含铑为0·3%质 量分数,三苯基膦为3%质量分数,三苯基氧膦 为2%质量分数和丙烯氢甲酰化产生的高沸物为 21·2%质量分数。将此溶液以5kg/h的速度和 6m3/h流速的空气送入容积为0·5m3的浸没燃烧室内,在1150℃下燃烧。过剩氧为 20%~30%(分 子)燃烧持续20h。浸没燃烧装置内装有0·3m3的 水,直接用水吸收燃烧气体,催化剂中的膦转化为 氧化膦以磷酸水溶液的形式被回收,铑则以悬浮状 态留在水中,过滤后得到铑,回收率95%。
3·4 吸附分离法
日本专利[8]报道了从有机反应生成的高沸点 有机物或焦状蒸馏残渣中彻底分离铑-膦络合物的 方法。将完全溶解的铑-膦络合物催化剂从高沸点 的有机物中分离时,加入吸附剂进行纯粹的物理分 离。铑-膦络合物催化剂的活性实际并未降低,因 此,不用进行再活化处理,即
可直接使用。①向铑 -膦络合物催化剂和高沸点有机蒸馏残渣的混合物 中加入选择性吸附材料,吸附铑-膦络合物催化 剂。使用的吸附剂为碳酸盐和碱土金属硅酸盐,其 中以硅酸镁的使用为最佳。吸附剂的表面积一般为 100m2/g~1000m2/g;②用苯、甲苯、乙苯、二甲 苯、异丙苯、甲乙苯或二异丙基苯等芳香烃做洗涤 剂,彻底洗除高沸点蒸馏残渣。③用含少量膦的极 性溶剂从吸附剂上溶出铑-膦络合物催化剂。极性 溶剂可用醇、醚、异丙醇、二乙醚、四氢呋喃、甲 乙酮、醋酸乙酯和醋酸异戊胺,其中四氢呋喃的效 果最好,铑回收率>95%。
德国Erlander大学研究者发现[9],含铑的配合 物催化剂在室温下不溶于有机溶剂,在较高温度下 能与聚四氟乙烯进行反应。该研究小组称可以用聚 四氟乙烯制作加氢、氢硅化反应、氢甲酰化反应的 反应器聚四氟乙烯涂层或部件中氟原子的长链簇可 起固定作用,当装置冷却时,催化剂即沉积在聚四 氟乙烯上。
3我和姑姑·5 灰化燃烧法
针对烯烃羰基化催化剂废液中铑浓度低(几百 个ppm)的问题,采用减压蒸馏、减压蒸发结合特 定的升温程序将含铑催化剂废液浓缩、焚烧、灰化 得到铑灰,以回收金属铑,铑回收率>9
9%[10]。 此法具有工艺简单、无需加入任何化学添加剂、铑 的回收率高等优点。
3·中国教育科学学报6 离子交换与吸附
AnthonyG·A· 在专利[11]中提出,先用含有机 膦基物质对含铑催化剂预处理,然后以苯乙烯和二 乙烯苯组成的、经磺化的离子交换树脂吸附,再用盐酸洗脱,回收铑。此种方法成本低,劳动强度 小,工艺流程短,适合质量分数为400×10-4金属 铑的回收。
4 结 语
对于失活催化剂应首先查清其失活原因,然后 再选择与其相应的技术进行再生处理,对无法再生的催化剂选择适当的工艺回收铑。目前铑回收工艺 主要存在设备要求高,试剂消耗多,铑回收率不高,对环境有一定污染等问题。液—液萃取回收铑工艺以其反应过程快,分离提纯效果好,回收率较高等优点越来越多地为人们采用。而采用酸溶法直接将有机废铑催化剂转变为无机铑盐的回收方法, 也因其对设备要求较低,污染小,环保等优点引起人们的兴趣。

本文发布于:2024-09-21 22:45:44,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/2155.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:催化剂   活性   反应
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议