精准农业的研究现状和发展趋势的探讨

精准农业的研究现状和发展趋势的探讨
摘要: 本文论述了精准农业的概念、研究的现状及发展的趋势,结合国家高技术研究发展计划(863计划)项目应用情况,总结了我国在精准农业研究中所取得的研究成果。并对我国精准农业研究的发展前景进行了展望。
摘要:林麝精准农业;3S;研究现状;发展趋势
新邵县人事局
传统农业的发展在很大程度上依赖于生物遗传育种技术,以及化肥、农药、矿物能源、机械动力等投入的大量增加而实现。由于化学物质的过量投入引起生态环境和农产品质量下降,高能耗的管理方式导致农业生产效益低下,资源日显短缺,在农产品国际市场竞争日趋激烈的时代,这种管理模式显然不能适应农业持续发展的需要。
  信息技术和人工智能技术的高速发展促使一种新颖农业生产管理思想的诞生,从而产生了对农作物实施定位管理、根据实际需要进行变量投入等农业生产的精准管理思想,进而提出了精准农业的概念。
1. 精准农业概念和技术体系
2014sci影响因子
11精准农业的概念
精准农业(Precision Agriculture )是当今世界农业发展的新潮流,是由信息技术支持的根据空间变异,定位、定时、定量地实施一整套现代化农事操作技术与管理的系统,其基本涵义是根据作物生长的土壤性状,调节对作物的投入,即一方面查清田块内部的土壤性状与生产力空间变异,另一方面确定农作物的生产目标,进行定位的“系统诊断、优化配方、技术组装、科学管理”,调动土壤生产力,以最少的或最节省的投入达到同等收入或更高的收入,并改善环境,高效地利用各类农业资源,取得经济效益和环境效益。 精准农业由十个系统组成,即全球定位系统、农田信息采集系统、农田遥感监测系统、农田地理信息系统、农业专家系统、智能化农机具系统、环境监测系统、系统集成、网络化管理系统和培训系统。其核心是建立一个完善的农田地理信息系统(GIS),可以说是信息技术与农业生产全面结合的一种新型农业。精准农业并不过分强调高产,而主要强调效益。它将农业带入数字和信息时代,是21世纪农业的重要发展方向。专家认为,精准农业是建立在高新技术基础上的新型农业,将在未来10年里实现。
精准农业通过精心计算出庄稼所需化肥、水分、农药等的量,就可以极大的节约各种原
料的投入,大大降低生产成本,提高土地的收益率,同时十分有利于环境保护。精准农业使农业生产由粗放型转向集约型经营,其重要性是使各种原料的使用量达到非常准确的程度,经营可以像工业流程一样连续地进行,从而实现规模化经营。精准农业技术的应用非常广泛,如根据土壤的需要使肥力的状况得到改善,根据病虫害的情况来调节农药喷洒量,根据干旱情况及时灌溉,自动调节拖拉机制耕种深度,及时改善土壤,防止土地板结和肥力下降等。
1.2精准农业的技术体系
精准农业是在现代信息技术、生物技术、工程技术等一系列高新技术最新成就的基础上发展起来的一种重要的现代农业生产形式,其核心技术是地理信息系统、全球定位系统、遥感技术和计算机自动控制技术。精准农业系统是一个综合性很强的复杂系统,是实现农业低耗、高效、优质、安全的重要途径。
山阳县教育局  1、现代信息技术
  精准农业从90年代开始在发达国家兴起,目前已成为一种普遍趋势,英美法德等国家纷纷采用先进的生物、化工乃至航天技术使精准农业更加“精准”。美国把曾在海湾战争中运
用过的卫星定位系统应用于农业,这项技术被称为“精准种植”,即通过装有卫星定位系统的装置,在农户地里采集土壤样品,取得的资料通过计算机处理,得到不同地块的养分含量,精准度可达1~3平方米。技术人员据此制定配方,并输入施肥播种机械的电脑中。这种机械同样装有定位系统,操作人员进行施肥和播种可以完全做到定位、定量。还可将卫星定位系统安装在联合收割机上,并配置相连的电子传感器和计算机,收割机工作时可自动记录每平方米农作物产量、土壤湿度和养分等的精准数据。
  现代信息技术的特点是应用地理信息系统将土壤和作物信息资料整理分析,制成具有时效性和可操作性的田间管理信息系统,在此基础上,利用全球卫星定位系统、遥感技术以及计算机自动控制技术,根据空间每一操作单元的具体条件,通过调整资源投入量,达到增加产量、减少投入、保护农业资源和环境质量的目的。同时在农田经营管理决策的环节上,可根据不同情况选择“单纯获取高产”,“以适量投入,获取较好经营利润”或“减少资源消耗、保护生态环境”等多种不同优化目标。这项技术的构成包括空间定位的农作物产量信息采集技术和土壤信息定时采集技术、农田地理信息系统定时更新技术及空间定位的农业投入控制系统等。
  2、生物技术
  现代生物技术从广义上讲主要包括基因工程、细胞工程和微生物工程等,最富有生命力的核心技术是基因工程。现代生物技术最显著的特点是打破了远缘物种不能杂交的禁区,即用新的生物技术方法开辟一个世界性的新基因库源泉,用新方法把需要的基因组合起来,培育出抗病性更强、产量更高、品质更好、营养更丰富,且生产成本更低的新作物、新品种;另外还具有节约能源、连续生产、简化生产步骤、缩短生产周期、降低生产成本、减少环境污染等功效。如美国把血红蛋白转移到玉米中,不仅保持了玉米的高产性能,而且提高了它的蛋白含量。抗虫害转基因水稻、玉米、土豆、棉花和南瓜等已在美国、阿根廷、加拿大数百万公顷土地上试种。
  微生物农业是以微生物为主体的农业。微生物在合成蛋白质、氨基酸、维生素、各种酶方面的能力比动物、植物高上百倍;微生物还可利用有机废弃物,变废为宝、保护生态环境。利用有益微生物,不仅可获得大量生物量,用于制作食用蛋白质以及脂肪、糖类等专门食品,而且在生物防治、土壤改良方面也有突出表现。日本研制的EM(含80余种微生物的生物制剂),被称为可以挽救地球的有效微生物。施用EM可少用或不用化肥、农药和抗生素药物,净化环境。
  3、工程装备技术
  现代工程装备技术是精准农业技术体系的重要组成部分,是“硬件”,其核心技术是“机电一体化技术”;在现代精准农业中,应用于农作物播种、施肥、灌溉和收获等各个环节。缓释片
  精准播种。将精准种子工程与精准播种技术有机结合,要求精准播种机播种均匀、精量播种、播深一致。精准播种技术既可节约大量优质种子,又可使作物在田间获得最佳分布,为作物的生长和发育创造最佳环境,从而大大提高作物对营养和太阳能的利用率。
  精准施肥。要求能根据不同地区、不同土壤类型以及土壤中各种养分的盈亏情况,作物类别和产量水平,将N,P,K和多种可促进作物生长的微量元素与有机肥加以科学配方,从而做到有目的地科学施肥,既可减少因过量施肥造成的环境污染和农产品质量下降,又可降低成本。要求有科学合理的施肥方式和具有自动控制的精准施肥机械。
  精准灌溉。在自动监测控制条件下的精准灌溉工程技术,如喷灌、滴灌、微灌和渗灌等,根据不同作物不同生育期间土壤墒情和作物需水量,实施实时精量灌溉,可大大节约水资源,提高水资源有效利用率。
  精准收获。利用精准收获机械做到颗粒归仓,同时可根据一定标准准确分级。
2.精准农业的发展现状
  精准农业,又称为特定区域农作。它是依据特定区域的作物需求,运用知识系统和多种现代信息技术,精确决定投入的可变比率,如化肥、农药、水、种子和其它方面的投入量,使作物达到最佳生长量,提高作物的生产潜力,同时减少化学物质使用,减少环境污染。
  精准农业由许多要素组成,其主要内容包括:全球定位系统(GPS);地理信息系统(GIS);遥感;网络抽样技术;产量监测器;可变比率发生器(VRA);作物模拟模型。
    (1)全球定位系统(GPS)
  由美国国防部发射和经管的24颗卫星提供世界范围的地表定位。九十年代初,其中有18颗卫星提供了附加的地表定位能力。在GPS投入使用后不久,非军事应用于开发进展较快,提供的定位精度小于100m。而差分全球定位系统(DGPS-DifferentialGPS)开发成功,使未知点定位的精确度达到1m以内或更高。这个精确度对农场机械速度的实时性来讲是一巨大成就,它适用于田间产量监测、土壤抽样数据定位,以及农业化学物质和刹虫剂
的使用等。这些数据和它们的GPS定位同时被输入GPS的层图中,用于长期生产管理战略。
(2)地理信息系统(GIS)
  长期以来,模拟图像用来描述空间信息,过去的30年中,随着计算机性能的不断提高,导致用于捕捉、存储、分析和显示空间数据的特殊工具的发展,这些数字工具的集合形成一个GIS。
  储存于GIS的信息可分为两类:一类是空间参考数据(如样点、道路、地界);另一类是提供空间数据的属性数据(如土壤类型描述、土壤排水等级)。空间信息可参照一个地理坐标系统,通常以栅格(网格单元)或向量(弧段节点)格式存储。属性数据提供的信息用来描述一空间特征属性。GIS的一个关键特征是利用坐标数据库和空间特征数据库进行地理分析。
  GIS在精准农业中的作用是为决策和管理去组织并分析空间数据,再用于决策支持系统的各类模型中,对田间的不同管理区求解结果和制定计划。管理计划要考虑影响农场作业的
特殊生物特性和环境特性的变化,如耕种、种植、施肥,以及草害、病害和虫害的控制等。产量监测提供决定性的反馈信息,用以评价和调整下一作物生长周期的管理计划。
      (3)遥感
  遥感是通过数据分析获取有关某一目标、地域或现象信息的科学技术。用于农业生产的最基本能力是空中摄影,它允许生产者观测一系列重要的作物产量参数(如土壤变化、植物密度等),以及相应的水、肥和化学物质的投入。数据的及时性是作物管理的关键,从数据获取到传递给农场管理者的时间间隔是以小时计,而不是以月计。使用遥感信息的主要潜在经济效益是用精确信息对作物进行直接的动态搜寻,以发现潜在的问题,这有助于帮助生产者制定管理决策,达到降耗增效的目的。
  (4)网络抽样技术
新苏伊士运河
  网格抽样是田间采集土壤样本的一种方法。一个网格是田间地图上的一部分。网格大小可随土壤变化、田块大小、抽样价格而变化。网格的样本应尽可能最充分地表达田间的变化。卫星图象、空中摄影、土壤地图、田间记录和模拟的应用能减少描述四门特性所需要
的样本数量。这些图象特征变化不大,并被认为在某一季节是固定的数据。它还可用于描述或监测需要特别管理措施的环境区域。每一网格单元的样本点由GPS定位,几个样本可以直线取样,也可以圆形取样,圆的半径大约是3m。样本要在实验室里进行分析,测定土壤pH值、阳离子交换能力和土壤营养,其结果记录存贮在GIS软件和生成的土壤图象中。
  (5)产量监测器
  绘制产量图经常是实施精准农业的第一步,产量图像使农场管理者对田间产量变化可视化,当把土壤类型、土壤肥料、杂草分布和排水等制成图像时,农场管理者就能够识别影响产量变化的因素。产量图像是由产量监测器采集的相关地理产量生成的。到目前为止,开发的大部分产量监测器主要用于监测籽粒作物产量,而极少用于地下根茎类产品如糖用甜菜和马铃薯等。

本文发布于:2024-09-21 23:38:40,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/199974.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:农业   精准   土壤   技术   产量
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议