红外光谱吸收峰

红外光谱吸收
物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到。这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律。实验表明,组成分子的各种基团,如O-H、N-H、C-H、C=C、C=OH和C C等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。通常把这种能代表及存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。≡物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到。这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律。实验表明,组成分子的各种基团,如O-H、N-H、C-H、C=C、C=OH和C
一、基团频率区和指纹区
南京大学小百合bbs(一)基团频率区
中红外光谱区可分成4000 cm-1 ~1300 cm-1和1800cm-1 (1300 cm-1 )~ 600 cm-1两个区域。最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之
间,这一区域称为基团频率区、官能团区或特征区。区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。这种振动与整个分子的结构有关。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。基团频率区可分为三个区域:
(1)4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、H、C或S等原子。
O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1
CH(不是炔烃)基的吸收基出现在2890 cm-1 附近,但强度很弱。不饱和的C-H伸缩振动出现
在3000 cm-1以上,以此来判别化合物中是否含有不饱和的C-H键。苯环的C-H键伸缩振动出现在3030 cm-1附近,它的特征是强度比饱和的C-H浆稍弱,但谱带比较尖锐。≡因此,可能会对O-H伸缩振动有干扰C-H的伸缩振动可分为饱和和不饱和的两种。饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1,取代基对它们影响很小。如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;- CH2基的吸收在2930 cm-1 和2850 cm-1附近;
不饱和的双键=C-H的吸收出现在3010~3040 cm-1范围内,末端= CH2的吸收出
现在3085 cm-1附近。
动量矩CH上的C-H伸缩振动出现在更高的区域(3300 cm-1 )附近。≡叁键
(2)2500~1900 为叁键和累积双键区。
N基的吸收越弱,甚至观察不到。≡N基越近,-C ≡N基吸收比较强而尖锐。若分子中含有O原子,且O原子离-C ≡N基的缩振动在非共轭的情况下出现在2240~2260 cm-1附近。当与不饱和键或芳香核共轭时,该峰位移到2220~2230 cm-1附近。若分子中含有C、H、N原子,-C ≡C-R,因为分子是对称,则为非红外活性。-C ≡C-R出现在2190~2260 cm-1附近。如果是R-
C ≡-C 'CH的伸缩振动出现在
2100~2140 cm-1附近,R≡C-R两种类型,R-C≡-C 'CH和R≡N等等叁键的伸缩振动,以及-C =C=C、-C=C=O等累积双键的不对称性伸缩振动。对于炔烃类化合物,可以分成R-C≡C、-C≡主要包括-C
(3)1900~1200 cm-1为双键伸缩振动区
该区域重要包括三种伸缩振动:
①C=O伸缩振动出现在1900~1650 cm-1,是红外光谱中很特征的且往往是最强的吸收,以此很容易判断酮类、醛类、酸类、酯类以及酸酐等有机化合物。酸酐的羰基吸收带由于振动耦合而呈现双峰。
②C=C伸缩振动。烯烃的C=C伸缩振动出现在1680~1620cm-1,一般很弱。单核芳烃的C=C伸缩振动出现在1600 cm-1和1500 cm-附近,有两个峰,这是芳环的骨架结构,用于确认有无芳核的存在。
flash mtv
③苯的衍生物的泛频谱带,出现在2000~1650 cm-1范围,是C-H面外和C=C面内变形振动的泛频吸收,虽然强度很弱,但它们的吸收面貌在表征芳核取代类型上是有用的。
(二)指纹区
电脑让我欢喜让我忧C-H对称弯曲振动,对识别甲基十分有用,C-O的伸缩振动1300~1000 cm-1 ,是该区域最强的峰,也较易识别。δ1375 cm-1的谱带为甲基的≈1. 1800(1300)~900 cm-1区域是C-O、C-N、C-F、C-P、C-S、P-O、Si-O等单键的伸缩振动和C=S、S=O、P=O等双键的伸缩振动吸收。其中
2.900~650 cm-1区域的某些吸收峰可用来确认化合物的顺反构型。例如,烯烃的=C-H面外变形振动出现的位置,很大程度上决定于双键的取代情况。对于RCH=CH2结构,在990 cm-1和910 cm-1出现两个强峰;为RC=CRH结构是,其顺、反构型分别在690 cm-1和970 cm-1出现吸收峰,可以共同配合确定苯环的取代类型。
二、常见官能团的特征吸收频率
基团频率主要是由基团中原子的质量和原子间的化学键力常数决定。然而,分子内部结构和
外部环境的改变对它都有影响,因而同样的基团在不同的分子和不同的外界环境中,基团频率可能会有一个较大的范围。因此了解影响基团频率的因素,对解析红外光谱和推断分子结构都十分有用。
影响基团频率位移的因素大致可分为内部因素和外部因素。
内部因素:
1. 电子效应
包括诱导效应、共轭效应和中介效应,它们都是由于化学键的电子分布不均匀引起的。
(1)诱导效应(I 效应)
由于取代基具有不同的电负性,通过静电诱导作用,引起分子中电子分布的变化。从而改变了键力常数,使基团的特征频率发生了位移。
例如,一般电负性大的基团或原子吸电子能力强,与烷基酮羰基上的碳原子数相连时,由于诱导效应就会发生电子云由氧原子转向双键的中间,增加了C=O键的力常数,使C=O的振动频batista手术
率升高,吸收峰向高波数移动。随着取代原子电负性的增大或取代数目的增加,诱导效应越强,吸收峰向高波数移动的程度越显著。 诗人的别称
(2)中介效应(M效应)
当含有孤对电子的原子(O、S、N等)与具有多重键的原子相连时,也可起类似的共轭作用,称为中介效应。由于含有孤对电子的原子的共轭作用,使C=O上的电子云更移向氧原子,C=O双键的电子云密度平均化,造成C=O键的力常数下降,使吸收频率向低波数位移。对同一基团,若诱导效应和中介效应同时存在,则振动频率最后位移的方向和程度,取决于这两种效应的结果。当诱导效应大于中介效应时,振动频率向高波数移动,反之,振动频率向低波数移动。
2 . 氢键的影响
氢键的形成使电子云密度平均化,从而使伸缩振动频率降低。游离羧酸的C=O键频率出现在1760 cm-1 左右,在固体或液体中,由于羧酸形成二聚体,C=O键频率出现在1700 cm-1 。分子内氢键不受浓度影响,分子间氢键受浓度影响较大。
3. 振动耦合
当两个振动频率相同或相近的基团相邻具有一公共原子时,由于一个键的振动通过公共原子使另一个键的长度发生改变,产生一个“微扰”,从而形成了强烈的振动相互作用。其结果是使振动频率发生感变化,一个向高频移动,另一个向低频移动,谱带分裂。振动耦合常出现在一些二羰基化合物中,如,羧酸酐。
(4)Fermi共振
当一振动的倍频与另一振动的基频接近时,由于发生相互作用而产生很强的吸
收峰或发生裂分,这种现象称为Fermi共振。
外部因素
外部因素主要指测定时物质的状态以及溶剂效应等因素。同一物质的不同状态,由于分子间相互作用力不同,所得到光谱往往不同。分子在气态时,其相互作用力很弱,此时可以观察到伴随振动光谱的转动精细结构。

本文发布于:2024-09-25 18:27:56,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/167519.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:振动   吸收   伸缩   分子   效应   基团   化合物   光谱
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议