电压跟随器

电压跟随器的作用
    电压跟随器是用一个三极管构成的共集电路,它的电压增益是一,所以叫做电压跟随器。那么电压跟随有什么作用呢?共集电路是输入高阻抗,输出低阻抗,这就使得它在电路中可以起到阻抗匹配的作用,能够使得后一级的放大电路更好的工作。你可以极端一点去理解,当输入阻抗很高时,就相当于对前级电路开路,当输出阻抗很低时,对后级电路就相当于一个恒压源,即输出电压不受后级电路阻抗影响。一个对前级电路相当于开路,输出电压又不受后级阻抗影响的电路当然具备隔离作用,即使前、后级电路之间互不影响。所以,电压跟随器常用作中间级,以隔离前后级之间的影响,此时也称之为缓冲级基本原理还是利用它的输入阻抗高和输出阻抗低之特点,在电路中起阻抗匹配的作用。
举一个应用的例子:电吉他的信号输出属于高阻,接入录音设备或者音箱时,在音处理电路之前加入这个电压跟随器,会使得阻抗配匹,音更加完美。很多电吉他效果器的输入部分设计都用到了这个电路。
电压跟随器
  电压跟随器,顾名思义,就是输出电压与输入电压是相同的,就是说,电压跟随器的电压放大倍数恒小于且接近1
  电压跟随器的显著特点就是,输入阻抗高,而输出阻抗低,一般来说,输入阻抗要达到几兆欧姆是很容易做到的。输出阻抗低,通常可以到几欧姆,甚至更低。
  在电路中,电压跟随器一般做缓冲级及隔离级。因为,电压放大器的输出阻抗一般比较高,通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电阻中。在这个时候,就需要电压跟随器来从中进行缓冲。起到承上启下的作用。应用电压跟随器的另外一个好处就是,提高了输入阻抗,这样,输入电容的容量可以大幅度减小,为应用高品质的电容提供了前提保证。
  电压跟随器的另外一个作用就是隔离,在HI-FI-(高保真),电路中,关于负反馈的争议
已经很久了,其实,如果真的没有负反馈的作用,相信绝大多数的放大电路是不能很好的工作的。但是由于引入了大环路负反馈电路,扬声器的反电动势就会通过反馈电路,与输入信号叠加。造成音质模糊,清晰度下降,所以,有一部分功放的末级采用了无大环路负反馈的电路,试图通过断开负反馈回路来消除大环路负反馈的带来的弊端。但是,由于放大器的末级的工作电流变化很大,其失真度很难保证。
  在这里,电压跟随器的作用正好达到应用,把电路置于前级和功放之间,可以切断呀扬声器的反电动势对前级的干扰作用,使音质的清晰度得到大幅度提高。
电压隔离器输出电压近似输入电压幅度,并对前级电路呈高阻状态,对后级电路呈低阻状态,因而对前后级电路起到隔离作用
一、前言
  作为一名在读本科生,自己不能奢望从课堂上学到太多实践的知识。但我还是看到身边有很多热衷于电子设计的同学,虽然自己在电子线路设计的学习过程中一路磕磕绊绊,但一直有很多热心的学长老师帮助,在这个过程中自己也总结了一些学习方法,希望能给热爱电子线路设计的同学们一点点启发。
  二、完成一项电子设计作品
  07年的暑假,我观看了学长参加全国大学生电子设计竞赛的全过程,当时的A音频信号分析高苯乙烯橡胶给我留下了很深刻的印象。经过一年的学习自己的知识也差不多可已完成这个任务了,于是开始着手设计和制作。下面将详细介绍自己制作的全过程。
  2.1 任务分析
  题目的任务是计、制作一个可分析音频信号频率成分,并可测量正弦信号失真度的仪器。模拟部分的要求是:(1)输入阻抗:50Ω 2)输入信号电压范围(峰-峰值):100mV5V;(3)输入信号包含的频率成分范围:200Hz10kHz。数字部分的要求是:(1iview20Hz分辨力的频谱分析;(2)信号各分量功率测量;(3)信号失真度测量。
  经过分析,模拟部分需要制作一个AGC(自动增益控制)放大器电路,而数字部分主要是进行FFT(快速傅里叶变换)算法和功率、失真度算法的实现。
  对于数字部分,由于作者手上有eZDSP2812的开发板,所以作者决定采用TI公司的DSP TMS320F2812作为整机运算控制核心。
  对于模拟部分,经过分析他只要由一下几部分构成:
点击看原图
  由于TMS320F2812的片上ADC动态输入范围为0~3V,而题目要求的输入范围为100mV5V交流信号,因此需要对输入信号峰值进行检测,然后根据结果对判断信号进行放大或衰减,并将信号电平由0V提升到1.5V。为了防止高频信号被采样,在ADC前增加滤波器,考虑到频谱分析的缘故,应采用具有带内最大平坦度的巴特沃思滤波器。
  经过以上分析,已经可以得到如下放大电路的整体框图。
点击看原图
  细心的朋友可能会问,为什么峰值检测放在程放之后呢,是否可以直接接在信号输入端。这个问题作者在方案确定时经过了一番细致考虑,理论上两种方法都可以,但是要注意到,峰值检测电路对毫伏级的输入信号检测精度很有限,实测误差会大于10%,而经过放大后再进行峰值检测有利于提高峰值检测精度,从而更有效的选择程放的放大倍数。
  2.2 借助TI网上选型工具确定各部分方案
  记得TI模拟器械技术部首席科学家Tim·Kalthoff先生在武汉大学的湖北省电赛颁奖典礼上说过:“TI的网站是一所很好的模拟大学。确实如此,TI的网站有许多帮助设计人员完成选型、方案设计、方案验证的工具和向导,这对于想作者一样的初学者是很有帮助的。
  2.2.1 程控增益放大器
  作者决定从程控增益放大器部分开始确定设计方案,对于本部分,和很多人一样,作者一开始想到两种方案:1OPA + 模拟多路复用器;2安克.集成程控增益放大器。
  怀着这两种方案,作者像往常一样,先登陆TI中国的focus.ti/cn/tihome/docs/homepage.tsp,然后下载了应用指南《音频指南》并仔细阅读,作者最先发现的是一款集成程放PGA2310非常适合我的设计,增益范围+31.5dB to ?95.5dB,供电电压最大为 ±15V ,输入输出范围接近供电电压。于是我很兴奋地登陆TI中国样片中心的网站开始申请教育样片(TI公司有大学合作计划)。
  令人感到沮丧的是,样片缺货。于是,作者选择了第一种方案,这种方案的优点是OPA较容易获得,另外作者手上有MAXIM公司的一款性能很不错的多路复用器MAX308
  2.2.2 电平提升电路
  对于这部分,作者也想到了两种方案:1.直流电平取自电源电压。这种方法优点是无需增加额外电路,缺点是电源纹波会影响频谱分析的精度。2.通过电压基准源+电压加法器。这种方法的优点是噪声纹波小,缺点是需要增加电路复杂度。
  考虑到采用电阻分压的方法会在信号中引入电源的纹波,影响频谱分析精度,所以作者选择了第二种方案,并决定采用手上的低噪声电压基准源AD780提供3V直流电平,并通过OPA228衰减0.5倍得到1.5V直流电平。
  2.2.3 峰值检测电路
  作者记得模电课上老师说过峰值检测电路(PKD)的大致结构,由二极管和低漏电容组成。在实际应用中,PKD输入输出需要加缓冲,作者这部分的设计参考了AD公司OP177TI公司OPA128的数据手册中提供的电路图:
  这两种方案本质上是一样的思路,输入为理想二极管接法,输出为电压跟随器,特别的地方是采用场效应管或晶体管代替二极管,这样的好处是方向漏电流小,因为他们的方向漏电流都在pA级别,而二极管方向漏电流是nA级的。另外,电容的选择也尤为重要,低漏电流是首要考虑,作者手上有低漏的CBB电容,故选择CBB作为储存电荷的电容器。输出的运放最好选用偏置电流小的运放,FET输入型的是首选。
  总体而言,TI的方案是AD方案的改进型,场效应管前的二极管可以进一步防止方向漏电流。由于经验不足,作者当时决定留到仿真时才决定二者中选择哪一种。
  2.2.4 德阳市实验小学校园网抗混叠滤波器
  对于滤波器的设计,作者一直采用查表法设计,这一次决定尝试使用TI网上推荐的FilterPro滤波器设计软件。作者很快从网上获得了免费的设计软件,并在自己的电脑安装了软件。
  但让我感到很遗憾的是,软件在作者的电脑上运行不一会儿就弹出警告窗口报错,于是作者到TI网上下载了该软件的应用报告《FilterProTM MFBSallen-Key低通滤波器设计程序》
,可是按照文章的方法操作还是无法让软件工作。直到现在为止还不知道为什么,可能是因为个人水平问题,希望有用过该软件的朋友交流交流。
  最后,作者使用常规方法,查表得出了截止频率为17kHz(足够的余量)的四阶巴特沃思低通滤波器的电容电阻参数。
  三、使用TINA-TI 7.0进行方案验证
  到此为止,本题的模拟电路部分方案设计已经初步完成了。下面的工作就是仿真验证了。
  作者采用了TI公司免费提供的仿真软件TINA TI对设计方案进行仿真验证,作者选择TINA的原因是,它比PSPICE更适合初学者,并且TI的有大量的文档使用该软件进行仿真测试。
  作者首先对个单元电路进行仿真,通过对峰值检测部分的仿真,作者发现两种方案的精度都足够满足本题要求。于是作者选择了ADI公司的电路图并对其进行了一些修改,作者将晶体管和二极管统一换成二极管1N4148放大器采用TI公司经典FET输入运放TL082。使用TINA 7.0山西太原重型机器厂仿真后发现结果还是很令人满意,经过参数微调后决定了一下电路。
  接着作者采用相同的方法完成了各部分电路及总体电路的仿真测试,期间发现了一些错误和修改了一些参数,如加法器误采用了同相加法器。最后得到整体电路图和幅频响应特性:
  四、动手制作电路板
  考虑到PCB制作周期较长,而学校快放假了,作者决定手工焊接,于是在学校实验室里过了一晚,第二天早上终于全部测试通过。下面是作者手工焊接的电路板:
  五、测试仪器及测试数据
  5.1 测试仪器
  从上至下是:泰克TDS 1002B、新联EE1643C函数信号发生器、FLUKE 五位半台式万用表、 新联EE1461 DDS信号发生器(没有使用)、MATRIX 实验室用直流稳压电源。
5.2.1 幅频特性测试         
  -3dB点,输入信号峰峰值为1V16.95kHz
  从结果看,测试结果和TINA的仿真结果相当接近。
  5.2.2 峰值检测误差测试
  峰值检测电路整体误差小于10%,信号幅值在1V以上时有较高的精度。如果将输入信号放大到该区间,则可进一步提高峰值检测精度。
  输入信号幅值256mV10.10kHz,峰值检测结果244mV
压跟随器是共集电极电路,信号从基极输入,射极输出,故又称射极输出器。基极电压与
集电极电压相位相同,即输入电压与输出电压同相。这一电路的主要特点是:高输入电阻、低输出电阻、电压增益近似为1,所以叫做电压跟随器。

本文发布于:2024-09-24 12:19:58,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/162329.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:电路   电压   作者   信号   输入   部分
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议