电磁场与电磁波论文

电磁场与电磁波
t10a
摘要:电磁场与电磁波理论是近代自然科学中,理论相对最完整、应用最广泛的支柱学科之一。电磁场与电磁波技术已遍及人类的科学技术、政治、经济、军事、文化以及日常生活的各个领域。电磁场与电磁波课程更是电子科学与技术专业的主干课程。
关键词:电磁场与电磁波;电子科学与技术;应用 822uu
电磁场与电磁波是客观存在的一种物质,具有物质的两种重要属性:能量和质量。但是,电磁场与电磁波的质量极其微小,因此,通常只研究电磁场与电磁波的能量特性。人类对电磁现象的认识源远流长,但其知识与应用开始形成系统化及理论化则始于18世纪,卡文迪许、高斯、库伦等著名科学家对电磁现象所做的卓有成效的研究启动了电磁世界这一巨轮的运转。而19世纪则是电磁研究蓬勃开展的时代,法拉第、欧姆、傅立叶、基尔霍夫、安培、麦克斯韦、赫兹、楞次,单单从这些名字和科学家的阵容,你就可以感受到这一时期电磁科学取得了多么辉煌的成就。
还俗方丈
库仑定律的建立基于英国科学家卡文迪许在1772年做的一个一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。库伦定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。安培在假设了两个电流元之间的相互作用力着它们的连线之间的作用力正比于它们的长度和电流强度,而与它们之间的距离的平方成反比的公式,即提出了著名的安培环路定理。基于这与牛顿万有引力定律十分类似,泊松、高斯等人仿照引力理论,对电磁现象也引入了各种场矢量,如电场强度、电通量密度(电位移矢量)、磁场强度、磁通密度等,并将这些量表示为空间坐标的函数。但是当时对这些量仅是为了描述方便而提出的数学手段,实际上认为电荷之间或电流之间的物理作用是超距作用。直到法拉第,他认为场是真实的物理存在,电力或磁力是经过场中的力线逐步传递的,最终才作用到电荷或电流上。他在1831年发现了著名的电磁感应定律,并用磁力线的模型对定律成功地进行了阐述,但是电磁感应定律的确认是在1851年,这一过程花了20年。1846年,法拉第还提出了光波是力线振动的设想,为以后麦克斯韦从数学上建立电磁场理论奠定了基础。
麦克斯韦继承并发展了法拉第的这些思想,仿照流体力学中的方法,采用严格的数学形式,将电磁场的基本定律归结为4个微分方程,人们称之为麦克斯韦方程组。在方程中麦克斯韦
对安培环路定律补充了位移电流的作用,他认为位移电流也能产生磁场。根据这组方程,麦克斯韦还导出了场的传播是需要时间的,其传播速度为有限数值并等于光速,从而断定电磁波与光波有共同属性,预见到存在电磁辐射现象。静电场、恒定磁场及导体中的恒定电流的电场,也包括在麦
克斯韦方程中,只是作为不随时间变化的特例。麦克斯韦全面地总结了电磁学研究的全部成果,并在此基础上提出了“感生电场”和“位移电流”的假说,建立了完整的电磁场理论体系,不仅科学地预言了电磁波的存在,而且揭示了光、电、磁现象的内在联系及统一性,完成了物理学的又一次大综合。他的理论成果为现代无线电电子工业奠定了理论基础。1873年,麦克斯韦出版《电磁学通论》,他不仅用数学理论发展了法拉第的思想,还创造性的建立了电磁场理论的完整体系。在这本书中,他的思想得到更完善的发展和更系统的陈述。他把以前的电磁场理论都综合在一组方程式中,得到了电磁场的数学方程-----麦克斯韦电磁方程组。以简洁的数学结构,揭示了电场和磁场内在的完美对称。《电磁学通论》是人类第一个有关经典场论的不朽之作。最初,在《电磁学通论》书中,麦克斯韦共列出了20个分量方程,如果采用矢量方程,则仅有8个。后来简化成四个。1890年前后,德国物理学家赫兹和英国物理学家亥维赛,又两次简化麦克斯韦方程组,才得到人们通用
的微分形式。1905年,爱因斯坦建立的狭义相对论,否定了以太参考系,使得麦克斯韦方程组和洛伦兹力公式在所有惯性参考系中都成立。由于物质的电结构是物质的基本组成形式,电磁场是物质世界的重要组成部分,电磁作用是物质的基本相互作用之一,电磁过程是自然界的基本过程,因此,电磁学不仅是物理学各个领域的基础,也是化学、生物学等基础学科以及许多交叉、边缘学科的基础。 香农熵
岐山县中医医院电磁场理论的发展经历了很长时间,从发现到证实,从现象到理论,这一过程需要几代物理学家的努力付出。
电磁场理论在现代科技中有着广泛的应用。现代电子技术如通讯、广播、导航、雷达、遥感、测控、电子对抗、电子仪器和测量系统,都离不开电磁场的发射,控制、传播和接收;从工业自动化到地质勘测,从电力、交通等工业到医疗卫生等国民经济领域,几乎全都涉及到电磁场理论的应用。不仅如此,电磁学一直是,将来仍是新兴科学的孕育点。
由此看来,在任何意义上,我们都不能轻视两个多世纪来电磁场与电磁波理论对对科学技术及人类社会所做出的巨大贡献。可以毫不夸张地说,没有电磁场与电磁波理论的发展,就不可能有现代信息化社会的出现。从电磁场理论的发展历史到电磁场理论在现代科技中
的应用,我们了解到的是电磁场理论的发展经历了很长时间,从初步的认识到完善,几代物理学家为之付出了很多的努力,然而它的发展还没有停止,还有很多被隐藏的真理等待我们去探索,电磁场理论应用的领域应该还可以被扩展,这些都等待我们去发掘。
电磁场与电磁波课程是高等学校电子信息类及电气信息类专业本科生的一门技术基础课,具有非常重要的专业基础课程公共平台的作用和地位。是我们学习微波技术、光技术、雷达技术、电气技术、电子对抗等技术的基础。电子类各
专业主要课程的核心内容都是电磁现象在特定范围、条件下的体现,分析电磁现象的定性过程和定量方法是电类各专业学生掌握专业知识和技能的基础之一,因而电磁场与电磁波课程所涉及的内容,是合格的电子类专业本科学生所应具备的知识结构的必要组成部分。近代科学的发展表明,电磁场与电磁波基本理论又是一些交叉学科的生长点和新兴边缘学科发展的基础,而且对完善自身素质,增强适应能力长远地发挥作用。
电子科学与技术对于国家经济发展、科技进步和国防建设都具有重要的战略意义。面对电子科学与技术的迅猛发展,世界上许多发达国家,像美国、德国、日本、英国、法国等,都竞相将微电子技术和光电子技术引入国家发展计划。为了中国电子科学与技术事业的可
持续发展和抢占该领域中高新技术的制高点,就必须统筹教育、科研、开发、人才、资金和市场等各种资源和要素,其中人才培养是极其重要的一个环节。在新的历史条件下,开展电子科学与技术专业发展战略研究是非常必要的,这对于建立学科专业规范,培养出具有知识、能力、素质协调发展的,适合中国电子科学与技术领域不同层次发展要求的有用人才具有重要指导意义和战略意义。
电子科学与技术专业以电子器件及其系统应用为核心,重视器件与系统的交叉与融合,面向微电子、光电子、光通信、高清晰度显示产业等国民经济发展需求,培养在通信、电子系统、计算机、自动控制、电子材料与器件等领域具有宽广的适应能力、扎实的理论基础、系统的专业知识、较强的实践能力、具备创新意识的高级技术人才和管理人才,并掌握一定的人文社会科学及经济管理方面的基础知识,能从事这些领域的科学研究、工程设计及技术开发等方面工作。要学好电子科学与技术专业,就必须学好电磁场与电磁波课程。
电磁场与电磁波理论又是进一步学习一些后续课程的基础,如微波技术、天线、电波传播、光纤通信、电磁兼容技术等。在基础课和专业课之间起到承上启下的桥梁作用。
参 考 文 献
[1]百度百科电子科学与技术
[2]百度文库

本文发布于:2024-09-22 15:24:28,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/160353.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:电磁场   技术   理论   发展   电磁波   电子
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议