光学多道实验报告

光学多道与氢、氘同位素光谱
                                  武晓忠 201211141046
                      (北京师范大学2012级非师范班)
                              指导教师:***
                            实验时间:2014.9.16
摘 要  本实验通过光学多道分析仪来研究了H、D的光谱,观察并了解了H、D原子谱线的特征。H和D的光谱非常相似,但是二者的巴尔末系的同一能级的光谱之间仍有波长差,用光电倍增管可以测量出这个差值。通过实验我们也学习了光学多道分析仪的使用和基本光谱学技术
关键词  光学多道  H、D光谱
1、引言
光谱是不同强度的电磁辐射按照波长的有序排列,而原子光谱是由原子中的电子在能量变化时所发射或吸收的一系列波长的光所组成的光谱。由于氘原子和氢原子核外都只有一个电子,只是里德伯常量有一些差异,因此对应的谱线波长稍有差别。我们可以在实验中通过测出对应的谱线来得到二者的里德伯常量和电子与质子的质量比。
2、原理
2.1 物理原理
可知原子能量状态为一系列的分立值,有一系列的能级,并且当高能级的原子跃迁到低能级的时候会发射光子。设光子能量为,频率为,高能级为E2,低能级为E1,则有:
= h=E2-E1                                    (1)
从而有
                  =                                  (2)
由于能量状态的分立,发射光子的频率自然也分立,这些光会在分光仪上表现为分立的光谱线,也就是“线状光谱”。
根据巴尔末公式,对氢原子有
          =( - )                          (3)
为氢原子的里德伯常量。当=2,=3,4,5,····时,光谱是巴尔末系,在可见光区域。
对氘原子,同样有
            =( - )                              (4)
是氘原子的里德伯常量,当=2,=3,4,5,····时,光谱是巴尔末系。则
            =-= ( - ) ( - ),n=2,3,4,···        (5)
若忽略质子和中子的细微差别,我们可以得到H、D的里德伯常量关系为:
=  ,  =                      (6)
又知=109737.31,它是原子核质量为无穷大时候的里德伯常量
                    =2                                  (7)
              - =
              = ( - )]=            (8)
由于,则
沅陵县志                                                              (9)
因此只要在实验中测出对应谱线即可得电子和质子质量比
2.2 仪器原理
光栅多仪
其光路图如下图所示:
                    图1  光栅多仪光路图
其中,S1入射狭缝                M1平面反射镜
      S2CCD感光平面            M2---凹面镜
      S3---观察窗口                M3凹面镜
      G平面衍射光栅            M4平面反射镜
光从狭缝S1入射,经过平面镜M1反射后,被凹面镜M2反射成平行光并且投射到光栅G上。由于光栅具有衍射作用,不同波长的光被反射到不同的方向上(衍射角不相同),再经过凹面镜M3反射,成像在CCD感光平面所在焦面上,还可由可旋入的平面镜M4反射到观察窗S3或者出射狭缝上。可知若在光栅光谱仪的像平面处装上出射狭缝,经过散系统得到的单光可从狭缝相继出射,这样的仪器就叫做单仪。而若在像平面处有系列狭缝或矩形开口,可同时出射多个单光,这种仪器叫做多仪。从图中我们可知像平面处是有矩形开口的,因此仪器为多仪,实验也是光学多道实验。
光栅光谱仪的角散率为
                = (在衍射角不大的情况下)                          (10)
式中a为光栅常数,m为干涉级数。公式表明,光栅常数越小即刻线越密,它的角散率越大,干涉级数越高。
光栅光谱仪的分辨本领为
R=mN                                                      (11)
其中N是光栅的总可娴熟。因此,同样光栅常数的光栅,它的划刻面越大,即总刻线条数越多,它的分辨本领越大。
CCD光电探测器
CCD器件具有高灵敏度,低噪声,快速读出等优点。它主要是金属氧化物半导体制成的光电转换二极管,称为感光像元,排成面阵列或线阵列。这些像元可以将信号光子转变成信号电荷并实现电荷的储存、转移和读出。
光电倍增管
光电倍增管是一种将弱光信号转化为电信号的真空电子器件。其基本实验原理为光电效应,当光照到光阴极时,光阴极向真空中激发出光电子,这些光电子按聚集极电场进入倍增系统,并通过进一步的二次发射得到倍增放大,放大后的电子用阳极收集作为信号输出。因为采用了二次发射倍增系统,所以光电倍增管在探测紫外、可见和近红外区的辐射能量的光探测器中具有极高的灵敏度和极低的噪声。故实验中用光电倍增管观察两条距离很近的谱线的分离,更加精确。
3、实验
3.1 实验仪器
实验中主要用到光栅多仪、CCD光电探测器和光电倍增管。在光栅多仪中,我们使用的是闪耀光栅。在狭缝S1前放置光源,若将光栅多仪的观察窗置于CCD处,则光在经过光栅多仪后出射到CCD光电探测器上,通过光电转化得到氢的光谱。由于实验中采用的是定标的方式,因此实验结果较为准确。而在测量氢氘谱线时,由于氢光谱和氘光谱的波长差较小,我们需要将小信号放大,因此将观察窗置于光电倍增管处。我们在实验中使用的是具有2048个像元的线阵列CCD器件。 
3.2实验方法
在实验开始前估算分别等于3,4,5时氢光谱的巴尔末系波长(结果如表1所示),接下来用)谱线作为已知波长进行波长测量的定标。选择哪种灯根据待测谱线附近哪种原子的谱线较多来确定。在使用CCD来对光谱测定时,只能显示一个22nm的标度,我们并不能够知道谱线和波长的对应关系。根据估算出的待测氢谱线来确定标准谱,选定标准谱在估测待测的氢,谱线附近,并且反复调节中心波长使得同一个摄谱范围内既可以观察到待测的氢谱线,也可以观察到至少两根标准谱线。在标度内,光栅光谱仪的扫描谱线与对应波长的关系满足线性关系(近似),因此可以通过线性方式来定标。
之后用光电倍增管对H-D光谱进行测量。先用CCD检测H-D光源的每一条谱线确定同一级别(的谱线是分离的。然后选择光栅光谱仪的倍增管模式,对400-600nm之间的谱线进行单程扫描,然后分别对=3,4,5的谱线进行“扩展和“寻峰,观察分立的两条光谱。测出氢氘光谱线的波长,算出相互间的波长差。将用光电倍增管测出的氢光谱与步骤1中所测出的氢光谱比较并进行波长修正。由于所做的实验在空气中,因此我们需要将波长换算成真空中的波长及波数。最后计算出并与公认值比较,并以波数为单位,按比例画出氢、氘的能级图。
                        表1:氢氘光谱的估算
=109677.58,=109707.44
泰州数字电视
3
4
5
6
/nm
656.47
486.27
434.17
410.29
/nm
656.29
486.14
434.05
410.18
瘦身物语
在实验过程中对于检索结果可以截图并将文件储存好,截得的图片可以按照时间顺序和内
容命名并整理。
4 实验结果分析与讨论
4.1用CCD光学多道系统测量氢光谱
首先需对已知标准谱进行定标,然后采用线性定标的方式(这是由于光栅光谱仪的扫描谱线与对应波长的关系近似满足线性关系)明确扫描谱线和波长的关系。由于界面上只能显示一个22nm的标度,因此我们要求在氢的待测谱线附近要有较多的标准谱线。那由于在=3时的氢光谱(即约656nm的谱线)附近原子谱线较多,因此可以用灯的谱线来定标。而在人胰岛素=4,5时的氢光谱附近原子谱线较多,因此可以用的谱线来定标。定标波长和待测波长的数据如表二所示:
                              表2:测量氢光谱
定标波长1/nm
定标波长2/nm
待测波长/nm
=3
650.65
659.90
656.30
=4
471.32
492.19
486.16
=5
438.79
443.74
434.01湖南工程学院学报
由于实验是在空气中进行的,所以我们得到的不是在真空中的氢光谱。因此需要将实验测得的波长换算成真空中的波长。换算结果如表三所示:
                        表3:氢光谱在真空中波长和波数
政府预算管理论文
空气中波长/nm
ng
真空中波长/nm
波数/
=3
656.30
1.0002876
656.49
1523255.35
=4
486.16
1.0002876
486.30
2056344.58
=5
434.01
1.0002876
434.13
2303431.91
从表中我们可以看到,虽然氢光谱的波长不同,但是ng都为1.0002876。这是由于ng虽然与波长有关,但是波长的影响非常小,在实验中基本可以忽略不计。此外,我们可以看到,随着的增加,氢光谱在真空中的波长减小,并且光谱在真空中的波长差也在减小。结果满足 随着的增大而减小的规律。

本文发布于:2024-09-23 01:35:25,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/156580.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:波长   光谱   谱线   实验
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议