最新-高中物理 原子物理重要知识点详解 精品

第一讲 
1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。本章简单介绍一些关于原子和原子核的基本知识。
§1.1    原子
111、原子的核式结构
1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。1918年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。
1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核
里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm以下。
11官僚政治2氢原子的玻尔理论
1、核式结论模型的局限性
通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。由此可得两点结论:
①电子最终将落入核内,这表明原子是一个不稳定的系统;
②电子落入核内辐射频率连续变化的电磁波。原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。
为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象
提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。
2杜邦分析法、玻尔理论的内容:
一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。
二、原子从一种定态(设能量为E2)跃迁到另一种定态(设能量为E1)时,它辐
射或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即
=E2-E1
三、氢原子中电子轨道量子优化条件:氢原子中,电子运动轨道的圆半径r和运动初速率v需满足下述关系:
n=12……
其中m为电子质量,h为普朗克常量,这一条件表明,电子绕核的轨道半径是不连续的,或者说轨道是量子化的,每一可取的轨道对应一个能级。
定态假设意味着原子是稳定的系统,跃迁假设解释了原子光谱的离散性,最后由氢原子中电子轨道量子化条件,可导出氢原子能级和氢原子的光谱结构。
氢原子的轨道能量即原子能量,为   
企业国有产权转让管理暂行办法
因圆运动而有             
由此可得                 
根据轨道量子化条件可得:
      n=12……
,便有         
得量子化轨道半径为:
n=12……
式中已将r改记为r易熔塞n对应的量子化能量可表述为:
n=12……
n=1对应基态,基态轨道半径为   
计算可得:            =0.529
r1也称为氢原子的玻尔半径
基态能量为         
计算可得:          E1=eV
对激发态,有:
n=12
n越大,rn越大,En也越大,电子离核无穷远时,对应,因此氢原子的电离能为:
电子从高能态En跃迁到低能态Em辐射光子的能量为:
光子频率为         
因此氢原子光谱中离散的谱线波长可表述为:
试求氢原子中的电子从第n轨道迁跃到n-1第轨道时辐射的光波频率,进而证明当n很大时这一频率近似等于电子在第n轨道上的转动频率。
辐射的光波频率即为辐射的光子频率,应有
                   
代入可得
n很大时,这一频率近似为   
电子在第n轨道上的转动频率为:
                   
代入得               
因此,n很大时电子从n第轨道跃迁到第n-1轨道所辐射的光波频率,近似等于电子在第n轨道上的转动频率,这与经典理论所得结要一致,据此,玻尔认为,经典辐射是量子辐射在时的极限情形。
113、氢原子光谱规律
1、巴耳末公式
研究原子的结构及其规律的一条重要途径就是对光谱的研究。19世纪末,许多科学家对原子光谱已经做了大量的实验工作。第一个发现氢原子线光谱可组成线系的是瑞士的中学教师巴耳末,他于1885年发现氢原子的线光谱在可见光部分的谱线,可归纳为如下的经验公式
n=345
式中的为波长,R是一个常数,叫做里德伯恒量,实验测得R的值为1.186776118。上面的公式叫做巴耳末公式。当n=3456时,用该式计算出来的四条光谱线的波长跟从实验测得的四条谱线的波长符合得很好。氢光谱的这一系列谱线叫做巴耳末系。
2、里德伯公式
1896年,瑞典的里德伯把氢原子光谱的所有谱线的波长用一个普遍的经验公式表示出来,即
n=123
上式称为里德伯公式。对每一个,上是可构成一个谱线系:
34谷氨酸发酵                莱曼系(紫外区)
45            巴耳末系(可见光区)
56            帕邢系(红外区)
67            布拉开系(远红外区)
78            普丰德系(远红外区)
以上是氢原子光谱的规律,通过进一步的研究,里德伯等人又证明在其他元素的原子光谱中,光谱线也具有如氢原子光谱相类似的规律性。这种规律性为原子结构理论的建立提供了条件。
114、玻尔理论的局限性:
玻尔原子理论满意地解释了氢原子和类氢原子的光谱;从理论上算出了里德伯恒量;但是也有一些缺陷。对于解释具有两个以上电子的比较复杂的原子光谱时却遇到了困难,理论推导出来的结论与实验事实出入很大。此外,对谱线的强度、宽度也无能为力;也不能说明原子是如何组成分子、构成液体个固体的。玻尔理论还存在逻辑上的缺点,他把微观粒子看成是遵守经典力学的质点,同时,又给予它们量子化的观念,失败之处在于偶保留了过多的经典物理理论。到本世纪20年代,薛定谔等物理学家在量子观念的基础上建立了量子力学。彻底摒弃了轨道概念,而代之以几率和电子云概念。
§12    原子核
>给王虹的回信

本文发布于:2024-09-22 21:23:18,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/156578.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:原子   氢原子   轨道   电子
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议