中频感应加热电源的设计


摘  要四甲基联苯胺
中频感应加热以其加热效率高、速度快,可控性好及易于实现机械化、自动化等优点,已在熔炼、铸造、弯管、热锻、焊接和表面热处理等行业得到广泛的应用。
本设计根据设计任务进行了方案设计,设计了相应的硬件电路,研制了20KW中频感应加热电源
武汉三镇食品有限公司本设计中感应加热电源采用IGBT作为开关器件,可工作在10 Hz10 kHz频段。它由整流器、滤波器、和逆变器组成。整流器采用不可控三相全桥式整流电路。滤波器采用两个电解电容和一个电感组成型滤波器滤波和无源功率因数校正。逆变器主要由PWM控制器SG3525A控制四个IGBT的开通和关断,实现DC-AC的转换。
    设计中采用的芯片主要是PWM控制器SG3525A和光耦合驱动电路HCPL-316J。设计过程中程充分利用了SG3525A的控制性能,具有宽的可调工作频率,死区时间可调,具有输入欠电压锁定功能和双路输出电流。由于HCPL-316J具有快的开关速度(500ns),光隔离,故
障状态反馈,干尸可配置自动复位、自动关闭等功能,所以选择其作为IGBT的驱动。
对原理样机的调试结果表明,所完成的设计实现了设计任务规定的基本功能。此外,为了满足不同器件对功率需要的要求,设计了功率可调。这部分超出了设计任务书规定的任务。
关键词:感应加热电源;串联谐振;逆变电路;IGBT
引言    1
7  硬件调试    34

引言
随着功率器件的发展,感应加热电源的频率也逐步提高,经历了中频、超音频、高频几个阶段。在感应加热电源的应用中,淬火、焊管、焊接等工艺都要求高频率高功率的电源。功率MOSFET虽然可以实现高频工作,但其电压、电流容量等级低,大功率电源需采用串
、并联技术,影响了电源运行的可靠性。绝缘栅双极晶体管(IGBT)比较容易实现电源高功率化,但在高频情况下,其开关损耗,尤其是IGBT关断时存在的尾部电流,会限制工作频率的进一步提高。
蹦床网面本文论述的中频感应加热电源采用功率自关断功率器件IGBT,负载频率是开关管工作频率的二倍,间接拓宽了IGBT的使用频率;功率管工作于零电流开关状态,彻底消除了尾部电流引起的关断损耗,理论上可实现零开关损耗;同时采用死区控制策略后,可实现负载阻抗调节。以往一般采用晶闸管来实现逆变电路,但是晶闸管关断期反压太低,参数匹配麻烦,输出频率仍然偏低;而采用IGBT后,并让电路工作在电流断续状态下,这些问题都得到很好地解决。
为满足中小工件加热的需要,研制了一种新型线效的中频感应加热电源。该电源具有输出电压低圈匝数少、不需要中频变压器降压、结构简单、效率高。
1  绪论
感应加热具有加热效率高、速度快、可控性好及易于实现自动化等优点,广泛应用于金属
熔炼、透热、热处理和焊接等工业生产过程中,成为冶金、国防、机械加工等部门及铸、锻和船舶、飞机、汽车制造业等不可缺少的技术手段。
可编程序控制器原理及应用
1.1 感应加热的工作原理
感应加热原理为产生交变的电流,从而产生交变的磁场,在利用交变磁场来产生涡流达到加热的效果。如图1.1:
图1.1  感应电流图示
当交变电流通入感应圈时,感应圈内就会产生交变磁通,使感应圈内的工件受到电磁感应电势。设工件的等效匝数为。则感应电势:
                            (1-1)
如果磁通是交变得,设,则
       
有效值为:
                 (1-3)
台海局势感应电势E在工件中产生感应电流使工件内部开始加热,其焦耳热为:
                     (1-4)
式中: ——感应电流有效值(安),R——工件电阻(欧),t——时间(秒)。
这就是感应加热的原理。感应加热与其它的加热方式,如燃气加热,电阻炉加热等不同,它把电能直接送工件内部变成热能,将工件加热。而其他的加热方式是先加热工件表面,然后把热再传导加热内部。
金属中产生的功率为:
  (1-5)
感应电势和发热功率不仅与频率和磁场强弱有关,而且与工件的截面大小、截面形状等有关,还与工件本身的导电、导磁特性等有关。
在感应加热设备中存在着三个效应——集肤效应、近邻效应和圆环效应。
集肤效应:当交变电流通过导体时,沿导体截面上的电流分布式部均匀的,最大电流密度出现在导体的表面层,这种电流集聚的现象称为集肤效应。
近邻效应——当两根通有交流电的导体靠得很近时,在互相影响下,两导体中的电流要重新分布。当两根导体流的电流是反方向时,最大电流密度出现在导体内侧;当两根导体流的电流是同方向时,最大电流密度出现在导体外侧,这种现象称为近邻效应。
圆环效应:若将交流电通过圆环形线圈时,最大电流密度出现在线圈导体的内侧,这种现象称为圆环效应。
感应加热电源就是综合利用这三种效应的设备。在感应线圈中置以金属工件,感应线圈两端加上交流电压,产生交流电流,在工件中产生感应电流。此两电流方向相反,情况与两根平行母线流过方向相反的电流相似。当电流和感应电流相互靠拢时,线圈和工件表现出邻近效应,结果,电流集聚在线圈的内侧表面,电流聚集在工件的外表面。这时线圈本身表现为圆环效应,而工件本身表现为集肤效应。
    交变磁场在导体中感应出的电流亦称为涡流。工件中产生的涡流由于集肤效应,沿横截面由表面至中心按指数规律衰减,工程上规定,当涡流强度从表面向内层降低到其数值等于最大涡流强度的1/e(即36.8% ),该处到表面的距离△称为电流透入深度。由于涡流所产生的热量与涡流的平方成正比,因此由表面至芯部热量下降速度要比涡流下降速度快的多,可以认为热量(85~90%)集中在厚度为△的薄层中。透入深度△由下式确定:

本文发布于:2024-09-23 08:26:23,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/125950.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:加热   电流   感应   工件   电源   设计   效应   产生
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议