现代自动检测的发展现状与趋势

现代自动检测发展现状与趋势
所谓自动检测,是指由计算机进行控制对系统、设备和部件进行性能检测和故障诊断,是性能检测、连续监测、故障检测和故障定位的总称。现代自动检测技术是计算机技术、微电子技术、信息论、控制论、测量技术、传感技术等学科发展的产物,是这些学科在解决系统、设备、部件性能检测和故障诊断的技术问题中相结合的产物。凡是需要进行性能测试和故障诊断的系统、设备、部件,均可以采用自动检测技术,它既适用于电系统也适用于非电系统。电子设备的自动检测与机械设备的自动检测在基本原理上是一样的,均采用计算机/微处理器作控制器通过测试软件完成对性能数据的采集、变换、处理、显示/告警等操作程序,而达到对系统性能的测试和故障诊断的目的。现代的自动检测系统,通常包括控制器、激励信号源、测量仪器、开关系统、适配器、人机接口、检测程序几个部分。
现在自动检测技术在军/民两个方面都得到了广泛的应用。
在军事上,越来越多的武器装备配置了自动化和信息化设备,而设备中的电子装置的比例更是越来越高。这些设备的可靠性至关重要,在战场上一旦出现问题,轻则贻误战机,重则带来毁灭性后果。以现代军用飞机为例,航空电子设备的性能和质量已经成为作战效能的决定
因素,自动检测应经成为确保;在民用领域,提高产品质量和确保生产安全始终是企业的两项基本工作。在冶金、电力、石化、轻工、建材等连续生产的过程中,每时每刻需要检测各种工艺流程的工作状态,从而确保各种工艺参数和质量参数。为此经常设置故障监测系统以对温度、压力、流量、转速、振动和噪声等多种参数进行长期动态监测,以便及时发现异状,加强故障防御,达到早期诊断的目的。这样做可以避免突发事件,保证人员和机器的安全,提高经济利益。即使设备发生故障,也可以从检测的数据中出故障原因,缩短检修周期,提高检修质量。为了确定设备维护周期和大修的时机,还要检测和处理各种有关的安全参数和能耗参数,集数据采集采集、系统辨识和专家系统为一体的自动检测技术能够很好的解决这些问题。随着人民生活水平的提高,供电、供水、供气、供暖的计量逐步要求实现自动化管理,自动测试将信息获取和处理的结果直接转入信息的应用。随着家电市场的兴起,自动检测技术也进入人们的日常生活中,例如,自动检测并调节房间温度、湿度的空调机;自动检测衣服污度和重量,利用模糊技术的智能洗衣机等。
电力、石油、化工、机械等行业的一些大型设备通常在高温、高压和大功率状态下运行,保证这些设备安全运行在国民经济中有着重要意义。
回顾自动测试系统的发展过程,可以发现其发展的某些规律:
(1)自动检测的发展与经济和技术的发展同步,经济、技术发展越快,需要测试的范围就越宽,对自动检测的要求就越高;
(2)像许多技术的发展一样,自动检测的发展最初来自军事上的需要;
(3)具体自动检测系统的结构是“分久必合,合久必分”;
(4)信息技术对自动测试系统发展所起的关键作用值得注意。
由于现代微电子技术和计算机技术的飞速发展,检测技术与计算机深层次的结合引起了检测仪器领域的革命,全新的仪器结构概念和检测设备组建方式不断更新。现代检测设备组建的关键技术主要集中在以下几点。
1、程控接口技术
如何实现检测系统与被测设备间的自动连接,是实现检测过程自动化的关键。用计算机程序控制的接口单元(PIU)是解决这一问题的重要手段。这种程控接口(PIU)包括一组通用的连接点,并配有所需的缓冲器和多路分配器,用于完成三项基本任务。
(1)、发生、调理(如衰减、缓冲、变换等)模拟与数字激励,并将激励引导到相应的被测装置;
(2)、把从相应的被测装置引线来的测量数据进行调理并引导到自动检测系统;
(3)、将程控负载加到相应的被测装置引线上。
简言之,程控接口在程序控制下,能够把任何检测系统功能引导到任何被测设备,并能完成检测。
争议可2、虚拟仪器技术
80年代末期,美国NI(National Instrument)公司提出了虚拟仪器的概念:在一定的硬件平台下,利用软件在屏幕上生成虚拟面板,在软件导引下进行信号采集、运算、分析和处理,实现传统仪器的各种功能。
虚拟仪器是计算机技术同仪器技术深层次结合产生的全新概念的仪器,是对传统仪器概念的重大突破。传统仪器的主要功能模块都是以硬件(或固化的软件)的形式存在的,而虚
拟仪器是具有仪器功能的软硬件组合体。虚拟仪器系统的功能可根据软件模块的功能及其不同组合而灵活配置,因而得以实现并扩充传统仪器的功能。
3、专家系统
自动检测技术与专家系统的结合也是自动检测领域的一个重要发展趋势。专家系统作为人工智能的重要组成部分,于五十年代产生,到八十年代形成人工智能这一完整的学科体系。美国在八十年代中期就率先将专家系统引入航空机载设备的检测,效果良好。专家系统与典型自动检测设备的结合,将大大提高故障分析判断能力,提高设备维修保障效率。
助动词
4、现场故障检测技术
现代机载设备的发展趋势是微处理器和大规模集成电路的应用日益普遍,现场故障检测也就越加显得重要。为了便于现场维修,正在开发、研究诸如特征分析、逻辑分析、电路模拟、内在诊断等现场故障检测技术。例如,采用“特征分析技术”,在电路图的有关节点,标明“特征”,由设备本身产生激励,用一种简单的、无源的检测仪器—特征分析仪,就能迅速地在现场出故障,定位到元器件,从而大大地简化了维修现场的故障诊断,有效地提高了设备的战备率。
5、开放、可互操作的ATS实现技术神洁巾
所谓ATS的可互操作性是指两个以上的系统或部件可以直接、有效地共用数据和信息。就一般的ATS结构来说,其互操作性主要体现在可以共用TPS和ATE的资源,可以共用一个底层的诊断子系统,可以支持多种运行环境和语言。所谓系统的开放性是指:其功能部件采用广泛使用的标准或协议,从而可在不同的系统中使用,可以与其它系统中的部件互操作,软件可以方便的移植;其接口也符合广泛使用的标准、规范或协议,或具有完全明确的定义,从而通过插入新的功能部件,即可增加、扩展和提高系统的性能。
随着半导体和计算机技术的发展,新型或具有特殊功能的传感器出现,检测装置也向小型化、固体化及智能化发展,应用领域更加宽广。
1、不断提高监测系统的测量精度、量程范围、延长使用寿命、提高可靠性
科学技术的发展要求测量系统有更高的精度。近年来,人们研制出许多高精度的检测仪器以满足各种需求。例如,用直线光栅测量直线位移时,测量范围可达二三十米,而分辨率可达到微米级;人们已经研制出测量低至几个帕的微压力和高达几千兆帕高压的力传感器;开发了能够测出极微弱磁场的磁敏传感器等。
从20世纪60年代开始,人们对传感器的可靠性和故障率的数学模型进行了大量的研究,使得监测系统的可靠性和使用寿命大幅度提高。
2、应用新技术和新的物理效应,扩大检测领域
检测原理大多以各种物理效应为基础,近代物理学的进展如纳米技术、激光、红外、超声波、微波、光纤、放射性同位素等新成就为检测技术的发展提供了更多的依据。如图像识别、激光测距、红外测温、C型超声波无损探伤。放射性测量、中子探测爆炸物等非接触测量得到迅速发展。
20世纪70年代以前,检测技术主要用于工业部门,如今,检测领域正扩大到整个社会需要的各个方面,不仅包括工程、海洋开发、航空航天等尖端科技和新兴工业领域,而且已涉及生物、医疗、环境污染监测、危险品和的侦查、安全检测等方面,并且已经开始渗入到人们的日常生活设施之中。
3、发展集成化、功能化的传感器公路排水设计规范
随着半导体集成电路技术的发展,硅和砷化镓电子元件的高度集成化大量向传感器领域渗
透。人们将传感技术与信号处理电路制作在同一块硅片上,从而研制体积更小、性能更好、功能更强的传感器。例如,高精度的PN结测温集成电路;又如,将排成阵列的上千万个光敏元件及扫描放大电路制作在一块芯片上,制成彩CCD数码照相机、摄像机以及可摄像的手机等。今后还将在光、磁、温度、压力等领域开发出新型的集成度很高的传感器。
4、采用计算机技术,使检测技术智能化
自20世纪70年代微处理器问世以来,人们迅速将计算机技术应用到测量技术领域中来,使检测仪器智能化,从而扩展了功能,提高了精度和可靠性,目前研制的测量系统大多带有微处理器。
5、发展网络化传感器及检测系统
随着微电子技术的发展,现在已经可以将十分复杂的信号处理和控制电路集成到单块的芯片中去。传感器的输出不再是模拟量,而是符合某种协议格式(如可即插即用)的数字信号。从而可以通过企业内部网络,也可以通过网络实现多个系统之间的数据交换和共享,
从而构成网络化的检测系统。还可以远在千里之外,随时随地浏览现场工况,实现远程调试、远程故障诊断、远程数据采集和实时操作。
未来测试系统的发展,在军用领域就是采用开放的商业标准,大幅度减少测试系统软、硬件的开发、升级的费用,实现自动测试系统的互操作,满足武器维护的灵活性,实现各军种间、不同维护级别间自动测试系统的通用,最大限度地发挥测试系统的能力。民用领域, PC机的广泛应用给自动检测系统领域带来了革命性的变化,利用计算机丰富的软硬件资源可以有效地突破传统测试技术在数据信号处理、显示、传送、存储、打印等方面的局限。现代检测技术不仅要求仪器能单独测量某个量,而且更希望它们之间能够互相通信,实现信息共享,从而对被测的各系统进行综合分析、评估,得出准确判断。
苏格兰金链树在自动检测技术未来发展趋势中软测量和虚拟仪器将会是两个比较主要的方向。
关于软测量技术的发展
许多工业装置涉及复杂的物理、化学、生化反应,物质及能量的转换和传递,其系统的复杂性和不确定性导致了过程参数检测的困难,因此目前仍存在不少无法或难以直接用检测
仪表进行有效测量的重要过程参数。同时,随着现代流程工业的发展,仪表测量准确度要求越来越高,传统单一参数的静态或稳态集总式测量已不能满足工业应用要求,需要进行动态测量,获取反应过程的二维/三维的时空分布信息。在许多应用场合,还需要综合运用所获的各种测量信息才能实现有效地控制或状态检测等。这一切都对检测技术提出了新的要求和挑战。
乙烷
一般解决工业过程的测量要求的途径有两条:一是沿用传统的检测技术发展思路,通过研制新型的测量仪表以硬件形式实现参数的在线测量;另一种是采用间接测量的思路,利用易于获取的其他测量信息通过计算机来实现待测量的估计,近年来在控制和检测领域涌现出来的一种新技术——软测量技术真是这一思想的集中体现。
软测量技术的概念:软测量技术的理论根源是20世纪70年代Brosillow提出的推断控制。推断控制的基本思想是利用过程中比较容易测量的辅助变量,通过构造推断估计器来估计并克服扰动和测量噪声对过程主导变量的影响。估计器的设计是根据某种最有准则,选择一组即与主导变量有密切关系,又容易测量的辅助变量,通过构造某种数学关系,实现对主导变量的在线估计。软测量技术体现了估计器的特点。

本文发布于:2024-09-22 04:30:50,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/124322.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:检测   技术   测量   系统   发展
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议