一种纤维复合材料及其制备方法和应用与流程



1.本发明涉及电子烟导油材料技术领域,具体涉及一种纤维复合材料及其制备方法和应用。


背景技术:



2.目前市场上常见的电子烟中使用的雾化芯材其气溶胶发生装置主要由雾化芯和烟油仓组成,其中雾化芯是气溶胶发生装置的核心部分。雾化芯由多孔材料和发热元件组合而成,其中多孔材料起到向发热元件供给烟油的作用,对电子烟的发烟量、烟雾颗粒粒径、香料和尼古丁的传输效率等性能有重要影响。目前应用于雾化芯导油材料主要有两种:一种是以天然棉以及合成纤维为代表的棉芯,另一种是多孔导油陶瓷,多孔导油陶瓷虽具有优异的耐热性能,但导油速率有限,因此,棉芯依然是主流导油材料。现有技术中有采用棉纤维、亚麻纤维、无纺布等材料通过水刺工艺获得一种复合材料,上述材料在实际应用中虽然能够获得较好的锁油性和储油性,但导油性能依然无法满足实际需求,因此,研发一种具有高导油性能的纤维复合材料十分有必要。


技术实现要素:



3.本发明的目的在于克服现有纤维复合材料导油性能有限无法有效满足实际需求的缺陷,进而提供一种纤维复合材料及其制备方法和应用。
4.为达到上述目的,本发明采用如下技术方案:
5.一种纤维复合材料,所述纤维复合材料包括层叠设置的耐热层和导液层;
6.所述耐热层的材料包括耐热纤维和亲水纤维,所述导液层的材料包括亲水纤维,所述耐热纤维包括聚酰亚胺纤维,所述亲水纤维包括天丝纤维。可以理解的,所述耐热层的材料包括聚酰亚胺纤维和天丝纤维,所述导液层的材料包括天丝纤维。
7.优选的,以耐热层材料的总重为基准,耐热纤维的重量占比为20%-80%,亲水纤维的重量占比为20%-80%。
8.优选的,所述耐热纤维还包括聚苯硫醚纤维、芳纶纤维、聚四氟乙烯纤维、碳纤维、金属纤维、聚对亚苯基苯并二噁唑纤维(pbo)、聚间亚苯基苯并二咪唑纤维(pbi)中的至少一种;
9.所述亲水纤维还包括棉纤维、亚麻纤维、汉麻纤维、莫代尔纤维、铜氨纤维、竹纤维、海藻纤维、壳聚糖纤维、羧甲基纤维素纤维中的至少一种。当耐热纤维还包括聚苯硫醚纤维、芳纶纤维、聚四氟乙烯纤维、碳纤维、金属纤维、聚对亚苯基苯并二噁唑纤维(pbo)、聚间亚苯基苯并二咪唑纤维(pbi)中的至少一种时,本发明不对聚酰亚胺纤维与上述材料之间的配比做具体限定,可选的,二者之间的质量比可为(1-10):1。当亲水纤维还包括棉纤维、亚麻纤维、汉麻纤维、莫代尔纤维、铜氨纤维、竹纤维、海藻纤维、壳聚糖纤维、羧甲基纤维素纤维中的至少一种时,本发明不对天丝纤维与上述材料之间的配比做具体限定,可选的,二者之间的质量比可为(1-10):1。
10.优选的,所述耐热层和/或导液层的材料中还包括高回弹纤维,优选的,所述高回弹纤维包括中空涤纶纤维,进一步优选的,所述中空涤纶纤维为三维卷曲中空涤纶纤维。
11.本发明上述耐热纤维、亲水纤维以及高回弹纤维均为现有常规纤维材料,可通过市售获得。例如,聚酰亚胺纤维简称pi纤维,又称芳酰亚胺纤维,为本领域常规市售的纤维材料。
12.优选的,以耐热层材料的总重为基准,耐热纤维的重量占比为19.9%-80%,亲水纤维的重量占比为19.9%-80%,高回弹纤维的重量占比为0.1%-20%;
13.以导液层材料的总重为基准,亲水纤维的重量占比为50%-99.9%,高回弹纤维的重量占比为0.1%-50%。
14.优选的,以耐热层材料的总重为基准,耐热纤维的重量占比为20%-60%,亲水纤维的重量占比为20%-60%,高回弹纤维的重量占比为10%-20%;以导液层材料的总重为基准,亲水纤维的重量占比为80%-90%,高回弹纤维的重量占比为10%-20%。本发明通过控制高回弹纤维的用量以及耐热纤维和亲水纤维的用量可保证复合材料在提高导油性的同时提高材料的储油性和锁油性。
15.优选的,所述耐热层的孔隙率为70%-98%,导液层的孔隙率为50%-82%。
16.优选的,所述耐热层的厚度占耐热层和导液层总厚度的30%-60%;
17.所述耐热层的克重占耐热层和导液层总克重的30%-60%。
18.优选的,所述耐热层和导液层总厚度为0.9mm-1.8mm,耐热层和导液层总克重为180g/m
2-300g/m2。
19.优选的,所述耐热纤维的长度为38mm-60mm,纤度为0.8d-7.0d,所述亲水纤维的长度为28mm-60mm,纤度为0.9d-2.5d,所述高回弹纤维的长度为38mm-60mm,纤度为3d-10d。可以理解的,纤度单位d为丹尼尔。更优的,所述耐热纤维或亲水纤维的横截面形状会选用异形截面,如三叶形、十字形等,增加纤维本身的导液性能。可以理解的,纤度单位为丹尼尔,简称旦数(d),其值为纺织纤维粗细的一种单位,丹尼尔越大,表示纤维越粗。优选的,所述耐热纤维的长度为50mm-60mm,纤度为0.8d-1d,所述亲水纤维的长度为50mm-60mm,纤度为0.9d-1.0d,本发明通过控制上述耐热纤维和亲水纤维的长度和纤度可保证复合材料在提高导油性的同时提高材料的储油性和锁油性。
20.可选的,所述纤维复合材料的平均孔径为40-70μm,孔隙率为60-90%。
21.本发明还提供一种上述所述的纤维复合材料的制备方法,采用针刺工艺制备所述纤维复合材料。
22.优选的,包括如下步骤:
23.1)对耐热层材料进行开松、混合和梳理,得到单层纤维网状薄层材料,然后将若干单层纤维网状薄层材料铺设在一起形成纤维网材料,再将纤维网材料进行针刺缠结定型,得到耐热层半制成纤维网;
24.2)对导液层材料进行开松、混合和梳理,得到单层纤维网状薄层材料,然后将若干单层纤维网状薄层材料铺设在一起形成纤维网材料,再将纤维网材料进行针刺缠结定型,得到导液层半制成纤维网;
25.3)将耐热层半制成纤维网和导液层半制成纤维网通过针刺使其结合在一起,然后进行热轧,得到所述纤维复合材料。
26.优选的,
27.步骤1)中所述单层纤维网状薄层材料的克重为5-20g/m2,纤维网材料的厚度为4-15cm,所述针刺缠结定型步骤包括依次对纤维网材料进行预针刺工序和倒刺工序,优选的,所述预针刺工序中针板布针密度为2000-4000枚/米,针刺频率为350-450刺/分钟,针刺深度为1.5-2.0mm;倒刺工序中针板布针密度为3000-5000枚/米,针刺频率为390-500刺/分钟,针刺深度为1.9-2.5mm;进一步优选的,所述预针刺工序中针板布针密度为3500枚/米,针刺频率为400刺/分钟,针刺深度为1.5-2.0mm;倒刺工序中针板布针密度为4000枚/米,针刺频率为440刺/分钟,针刺深度为1.9-2.5mm。
28.步骤2)中所述单层纤维网状薄层材料的克重为10-30g/m2,纤维网材料的厚度为11-16cm,所述针刺缠结定型步骤包括依次对纤维网材料进行预针刺工序和倒刺工序,优选的,所述预针刺工序中针板布针密度为2000-4000枚/米,针刺频率为400-500刺/分钟,针刺深度为2.0-2.5mm;倒刺工序中针板布针密度为3000-5000枚/米,针刺频率为450-550刺/分钟,针刺深度为2.5-3.0mm;进一步优选的,所述预针刺工序中针板布针密度为3500枚/米,针刺频率为450刺/分钟,针刺深度为2.0-2.5mm;倒刺工序中针板布针密度为4000枚/米,针刺频率为500刺/分钟,针刺深度为2.5-3.0mm。
29.步骤3)中所述针刺步骤包括正刺步骤和倒刺步骤,优选的,正刺步骤中针板布针密度为10000-15000枚/米,针刺频率为1000-1400刺/分钟,针刺深度为1.0-2.0mm;倒刺步骤中针板布针密度为12000-16000枚/米,针刺频率为1000-1400刺/分钟,针刺深度为0.9-2.5mm,进一步优选的,正刺步骤中针板布针密度为12000枚/米,针刺频率为1200刺/分钟,针刺深度为1.0-1.5mm;倒刺步骤中针板布针密度为14000枚/米,针刺频率为1300刺/分钟,针刺深度为0.9-1.6mm。可选的,耐热层材料按照先接触刺针的一面进行放置。
30.所述热轧通过三辊烫光机进行,控制车速为20-50米/分钟,辊间距为0.9-1.8mm,热轧温度为160-180℃。
31.热轧结束后还包括将纤维复合材料进行卷绕形成卷材的步骤。
32.本发明还提供一种导液元件,所述导液元件材料为上述所述的纤维复合材料或上述所述的制备方法制备得到的纤维复合材料。
33.本发明还提供一种发热组件,包括上述所述的纤维复合材料以及与所述耐热层接触的发热体。
34.本发明还提供一种雾化器,所述雾化装置具有上述所述的发热组件。
35.本发明还提供一种电子雾化装置,包括上述所述的雾化器。
36.本发明的有益效果:
37.1)本发明提供的纤维复合材料,通过层叠设置耐热层和导液层,所述耐热层的材料采用聚酰亚胺纤维和天丝纤维,聚酰亚胺纤维具有较低的导热性能,有利于发热丝雾化过程中热量的散失,而较高温度下烟油的黏度会下降,有利于天丝纤维吸收烟油的流动性能,使复合材料内烟油的分布更均匀,同时导液层材料采用天丝纤维,使得聚酰亚胺纤维表面的烟油充分供应,有利于提升整个复合材料储油、锁油性能,本发明通过在耐热层中设置特定的聚酰亚胺纤维和天丝纤维,同时配合导液层的天丝纤维,可大大提升复合材料的导油性能,同时获得的复合材料还具有与现有导油材料相似,甚至更高的储油、锁油性能。
38.同时聚酰亚胺纤维具有非常优异的耐热性能且长期高温使用中不会有物理性能
的变化,作为耐热层的骨架材料,能较好的保持材料的尺寸稳定性。天丝纤维具有较棉纤维更好的吸液和锁液性能,保证了耐热层具有充分的储油能力,防止因供液不足导致的干烧(800℃-1000℃)甚至烧焦烧糊,特定的耐热层材料和导液层材料可保证即使在连续使用中,也有充分的烟油供应,导液、储液、锁液性能下降不大,维持更长的口感一致性。同时所获得复合材料具有优异的耐热性和使用寿命,以及更好的耐烟油侵蚀性能,长期使用很少发生降解劣化形成有害低聚物,减少杂味。
39.2)本发明所述耐热层和/或导液层的材料中还包括高回弹纤维,该纤维具有非常明显弹性回复,即使在高粘度的烟油浸泡中也能保证针刺工艺下无纺布的的高孔隙率结构,使得复合材料使用中其导油、储油、锁油性能不会衰减,甚至有所提升。
40.3)本发明所述耐热纤维还包括聚苯硫醚纤维、芳纶纤维、聚四氟乙烯纤维、碳纤维、金属纤维、聚对亚苯基苯并二噁唑纤维、聚间亚苯基苯并二咪唑纤维中的至少一种;所述亲水纤维还包括棉纤维、亚麻纤维、汉麻纤维、莫代尔纤维、铜氨纤维、竹纤维、海藻纤维、壳聚糖纤维、羧甲基纤维素纤维中的至少一种。本发明通过选择上述材料,有利于提升复合材料的导油性能,同时还可保证复合材料具有与现有导油材料相似,甚至更高的储油、锁油性能,且可满足不同产品性能需求。例如引入金属纤维或碳纤维有利于提升整体烟油的雾化效率,同时也具有普通棉材所要求的储油、锁油、导油性能;引入海藻纤维、壳聚糖纤维、羧甲基纤维素纤维有利于改善产品的漏液性能。
附图说明
41.为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
42.图1是实施例1制备得到的纤维复合材料的整体断面扫描电镜图。
43.图2是本发明实施例1中采用的聚酰亚胺纤维的耐热性能测试结果。
44.图3是市售棉纤维的耐热性能测试结果。
45.图4是实施例1制备得到的纤维复合材料的导油性能测试结果。
46.图5是实施例1制备得到的纤维复合材料的外观照片。
具体实施方式
47.提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。
48.实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
49.需要说明的是本发明以下实施例或对比例中所述涉及的纤维,其纤度和长度以括号的形式标出,以实施例1为例,聚酰亚胺纤维(2.0d
×
51mm)指的是聚酰亚胺纤维的纤度为
2.0d,长度为51mm。
50.以下实施例中涉及到的纤维复合材料的厚度、克重采用如下方法制备:
51.厚度使用千分厚度规(bk-3281、测量直径10mm)测定纤维复合材料的厚度,测定面积为3m
×
0.5m,在纤维复合材料幅宽方向测定20个点,求取平均值。
52.克重测试:在3m
×
0.5m的纤维复合材料上,随机取样10块,分别裁切成100cm2的圆形,称量,求取平均值。
53.实施例1
54.本实施例提供一种纤维复合材料,其制备方法包括如下步骤:
55.1)将400kg聚酰亚胺纤维(2.0d
×
51mm)和600kg天丝纤维(1.5d
×
38mm)送入粗开松机中,使块状卷曲压实的纤维得到初步开松,粗开松机转速为1250转/分钟,然后将初步开松的纤维送入混棉仓进行混合,再经梳理机的给棉辊的作用将纤维梳理成10g/m2的单层纤维网状薄层材料,然后将若干单层纤维网状薄层材料铺设在一起形成纤维网材料(纤维网材料的厚度为12cm),再将纤维网材料依次送入预针刺机和倒针刺机进行预针刺和倒针刺以对纤维网材料进行缠结定型,预针刺工序中针板布针密度为3500枚/米,针刺频率为400刺/分钟,针刺深度为1.7mm;倒刺工序中针板布针密度为4000枚/米,针刺频率为440刺/分钟,针刺深度为2.1mm,得到耐热层半制成纤维网;
56.2)将1000kg天丝纤维(1.5d
×
38mm)送入粗开松机中,使块状卷曲压实的纤维得到初步开松,粗开松机转速为1540转/分钟,然后将初步开松的纤维送入混棉仓进行混合,再经梳理机的给棉辊的作用将纤维梳理成20g/m2的单层纤维网状薄层材料,然后将若干单层纤维网状薄层材料铺设在一起形成纤维网材料(纤维网材料的厚度为15cm),再将纤维网材料依次送入预针刺机和倒针刺机进行预针刺和倒针刺以对纤维网材料进行缠结定型,预针刺工序中针板布针密度为3500枚/米,针刺频率为450刺/分钟,针刺深度为2.2mm;倒刺工序中针板布针密度为4000枚/米,针刺频率为500刺/分钟,针刺深度为2.7mm,得到导液层半制成纤维网;
57.3)将耐热层半制成纤维网和导液层半制成纤维网通过双通道送入正针刺机进行反复针刺,然后再通过倒针刺机进行针刺以使二者通过纤维交叉缠结固定在一起,其中,正刺步骤中针板布针密度为12000枚/米,针刺频率为1200刺/分钟,针刺深度为1.3mm;倒刺步骤中针板布针密度为14000枚/米,针刺频率为1300刺/分钟,针刺深度为1.3mm,然后通过三辊烫光机进行热轧,控制车速为20米/分钟,辊间距为1.3mm,热轧温度为180℃,热轧结束后进行卷绕形成卷材,得到所述纤维复合材料。
58.上述制备得到的纤维复合材料,包括层叠设置的耐热层和导液层;所述耐热层的材料为聚酰亚胺纤维和天丝纤维,所述导液层的材料为天丝纤维,以耐热层材料的总重为基准,聚酰亚胺纤维的重量占比为40%,天丝纤维的重量占比为60%,所述耐热层的孔隙率为78%,导液层的孔隙率为60%,所述耐热层的厚度占耐热层和导液层总厚度的45%,所述耐热层的克重占耐热层和导液层总克重的45%,所述耐热层和导液层总厚度为1.5mm,耐热层和导液层总克重为250g/m2。
59.图1是实施例1制备得到的纤维复合材料的整体断面扫描电镜图。由图1可知,上层为相对疏松多孔的耐热层结构,下层为相对紧密的导液层。图5是上述制备得到的纤维复合材料的外观照片,其结构可分为两层,上面一层为耐热层(聚酰亚胺纤维与天丝的混合),另
一层为导液层(天丝纤维)。
60.图2为上述采用的聚酰亚胺纤维原料的耐热性能测试结果。图3是市售棉纤维的耐热性能测试结果。由图2和图3可知,聚酰亚胺纤维的耐热性要优于棉纤维,将聚酰亚胺纤维应用到本发明的耐热层中更利于提升复合材料的耐热性能。
61.图4为本实施例制备得到的纤维复合材料的导油性能测试结果,其中测试过程中分为4个平行测试样品,分别为实施例1-1,实施例1-2,实施例1-3,实施例1-4,测试结果如图4所示。
62.实施例2
63.本实施例提供一种纤维复合材料,其制备方法包括如下步骤:
64.1)将800kg聚酰亚胺纤维(2.0d
×
51mm)和200kg天丝纤维(1.5d
×
38mm)送入粗开松机中,使块状卷曲压实的纤维得到初步开松,粗开松机转速为1250转/分钟,然后将初步开松的纤维送入混棉仓进行混合,再经梳理机的给棉辊的作用将纤维梳理成5g/m2的单层纤维网状薄层材料,然后将若干单层纤维网状薄层材料铺设在一起形成纤维网材料(纤维网材料的厚度为4.5cm),再将纤维网材料依次送入预针刺机和倒针刺机进行预针刺和倒针刺以对纤维网材料进行缠结定型,预针刺工序中针板布针密度为3500枚/米,针刺频率为350刺/分钟,针刺深度为1.5mm;倒刺工序中针板布针密度为4000枚/米,针刺频率为390刺/分钟,针刺深度为1.9mm,得到耐热层半制成纤维网;
65.2)将1000kg天丝纤维(1.5d
×
38mm)送入粗开松机中,使块状卷曲压实的纤维得到初步开松,粗开松机转速为1540转/分钟,然后将初步开松的纤维送入混棉仓进行混合,再经梳理机的给棉辊的作用将纤维梳理成10g/m2的单层纤维网状薄层材料,然后将若干单层纤维网状薄层材料铺设在一起形成纤维网材料(纤维网材料的厚度为11cm),再将纤维网材料依次送入预针刺机和倒针刺机进行预针刺和倒针刺以对纤维网材料进行缠结定型,预针刺工序中针板布针密度为3500枚/米,针刺频率为400刺/分钟,针刺深度为2.0mm;倒刺工序中针板布针密度为4000枚/米,针刺频率为450刺/分钟,针刺深度为2.5mm,得到导液层半制成纤维网;
66.3)将耐热层半制成纤维网和导液层半制成纤维网通过双通道送入正针刺机进行反复针刺,然后再通过倒针刺机进行针刺以使二者通过纤维交叉缠结固定在一起,其中,正刺步骤中针板布针密度为12000枚/米,针刺频率为1200刺/分钟,针刺深度为1.5mm;倒刺步骤中针板布针密度为14000枚/米,针刺频率为1300刺/分钟,针刺深度为1.6mm,然后通过三辊烫光机进行热轧,控制车速为20米/分钟,辊间距为0.9mm,热轧温度为180℃,热轧结束后进行卷绕形成卷材,得到所述纤维复合材料。
67.上述制备得到的纤维复合材料,包括层叠设置的耐热层和导液层;所述耐热层的材料为聚酰亚胺纤维和天丝纤维,所述导液层的材料为天丝纤维,以耐热层材料的总重为基准,聚酰亚胺纤维的重量占比为80%,天丝纤维的重量占比为20%,所述耐热层的孔隙率为71%,导液层的孔隙率为50%,所述耐热层的厚度占耐热层和导液层总厚度的30%,所述耐热层的克重占耐热层和导液层总克重的30%,所述耐热层和导液层总厚度为0.9mm,耐热层和导液层总克重为180g/m2。
68.实施例3
69.本实施例提供一种纤维复合材料,其制备方法包括如下步骤:
70.1)将200kg聚酰亚胺纤维(2.0d
×
51mm)和800kg天丝纤维(1.5d
×
38mm)送入粗开松机中,使块状卷曲压实的纤维得到初步开松,粗开松机转速为1250转/分钟,然后将初步开松的纤维送入混棉仓进行混合,再经梳理机的给棉辊的作用将纤维梳理成20g/m2的单层纤维网状薄层材料,然后将若干单层纤维网状薄层材料铺设在一起形成纤维网材料(纤维网材料的厚度为15cm),再将纤维网材料依次送入预针刺机和倒针刺机进行预针刺和倒针刺以对纤维网材料进行缠结定型,预针刺工序中针板布针密度为3500枚/米,针刺频率为450刺/分钟,针刺深度为2.0mm;倒刺工序中针板布针密度为4000枚/米,针刺频率为490刺/分钟,针刺深度为2.4mm,得到耐热层半制成纤维网;
71.2)将1000kg天丝纤维(1.5d
×
38mm)送入粗开松机中,使块状卷曲压实的纤维得到初步开松,粗开松机转速为1540转/分钟,然后将初步开松的纤维送入混棉仓进行混合,再经梳理机的给棉辊的作用将纤维梳理成30g/m2的单层纤维网状薄层材料,然后将若干单层纤维网状薄层材料铺设在一起形成纤维网材料(纤维网材料的厚度为15cm),再将纤维网材料依次送入预针刺机和倒针刺机进行预针刺和倒针刺以对纤维网材料进行缠结定型,预针刺工序中针板布针密度为3500枚/米,针刺频率为500刺/分钟,针刺深度为2.5mm;倒刺工序中针板布针密度为4000枚/米,针刺频率为450刺/分钟,针刺深度为3.0mm,得到导液层半制成纤维网;
72.3)将耐热层半制成纤维网和导液层半制成纤维网通过双通道送入正针刺机进行反复针刺,然后再通过倒针刺机进行针刺以使二者通过纤维交叉缠结固定在一起,其中,正刺步骤中针板布针密度为12000枚/米,针刺频率为1200刺/分钟,针刺深度为2.0mm;倒刺步骤中针板布针密度为14000枚/米,针刺频率为1300刺/分钟,针刺深度为2.5mm,然后通过三辊烫光机进行热轧,控制车速为20米/分钟,辊间距为1.8mm,热轧温度为180℃,热轧结束后进行卷绕形成卷材,得到所述纤维复合材料。
73.上述制备得到的纤维复合材料,包括层叠设置的耐热层和导液层;所述耐热层的材料为聚酰亚胺纤维和天丝纤维,所述导液层的材料为天丝纤维,以耐热层材料的总重为基准,聚酰亚胺纤维的重量占比为20%,天丝纤维的重量占比为80%,所述耐热层的孔隙率为78%,导液层的孔隙率为61%,所述耐热层的厚度占耐热层和导液层总厚度的50%,所述耐热层的克重占耐热层和导液层总克重的50%,所述耐热层和导液层总厚度为1.8mm,耐热层和导液层总克重为300g/m2。
74.实施例4
75.本实施例提供一种纤维复合材料,其制备方法包括如下步骤:
76.1)将300kg聚酰亚胺纤维(2.0d
×
51mm)、100kg三维卷曲中空涤纶纤维(5d
×
60mm)、和600kg天丝纤维(1.5d
×
38mm)送入粗开松机中,使块状卷曲压实的纤维得到初步开松,粗开松机转速为1250转/分钟,然后将初步开松的纤维送入混棉仓进行混合,再经梳理机的给棉辊的作用将纤维梳理成10g/m2的单层纤维网状薄层材料,然后将若干单层纤维网状薄层材料铺设在一起形成纤维网材料(纤维网材料的厚度为10cm),再将纤维网材料依次送入预针刺机和倒针刺机进行预针刺和倒针刺以对纤维网材料进行缠结定型,预针刺工序中针板布针密度为3500枚/米,针刺频率为400刺/分钟,针刺深度为2.0mm;倒刺工序中针板布针密度为4000枚/米,针刺频率为440刺/分钟,针刺深度为2.4mm,得到耐热层半制成纤维网;
77.2)将900kg天丝纤维(1.5d
×
38mm)、100kg三维卷曲中空涤纶纤维(5d
×
60mm)送入粗开松机中,使块状卷曲压实的纤维得到初步开松,粗开松机转速为1540转/分钟,然后将初步开松的纤维送入混棉仓进行混合,再经梳理机的给棉辊的作用将纤维梳理成20g/m2的单层纤维网状薄层材料,然后将若干单层纤维网状薄层材料铺设在一起形成纤维网材料(纤维网材料的厚度为15cm),再将纤维网材料依次送入预针刺机和倒针刺机进行预针刺和倒针刺以对纤维网材料进行缠结定型,预针刺工序中针板布针密度为3500枚/米,针刺频率为450刺/分钟,针刺深度为2.5mm;倒刺工序中针板布针密度为4000枚/米,针刺频率为500刺/分钟,针刺深度为3.0mm,得到导液层半制成纤维网;
78.3)将耐热层半制成纤维网和导液层半制成纤维网通过双通道送入正针刺机进行反复针刺,然后再通过倒针刺机进行针刺以使二者通过纤维交叉缠结固定在一起,其中,正刺步骤中针板布针密度为12000枚/米,针刺频率为1200刺/分钟,针刺深度为1.3mm;倒刺步骤中针板布针密度为14000枚/米,针刺频率为1300刺/分钟,针刺深度为1.3mm,然后通过三辊烫光机进行热轧,控制车速为20米/分钟,辊间距为1.3mm,热轧温度为180℃,热轧结束后进行卷绕形成卷材,得到所述纤维复合材料。
79.上述制备得到的纤维复合材料,包括层叠设置的耐热层和导液层;所述耐热层的材料为聚酰亚胺纤维、天丝纤维和三维卷曲中空涤纶纤维,所述导液层的材料为天丝纤维和三维卷曲中空涤纶纤维,以耐热层材料的总重为基准,聚酰亚胺纤维的重量占比为30%,天丝纤维的重量占比为60%,三维卷曲中空涤纶纤维的重量占比为10%,以导液层材料的总重为基准,天丝纤维的重量占比为90%,三维卷曲中空涤纶纤维的重量占比为10%,所述耐热层的孔隙率为85%,导液层的孔隙率为65%,所述耐热层的厚度占耐热层和导液层总厚度的45%,所述耐热层的克重占耐热层和导液层总克重的45%,所述耐热层和导液层总厚度为1.5mm,耐热层和导液层总克重为250g/m2。
80.实施例5
81.本实施例提供一种纤维复合材料,其制备方法包括如下步骤:
82.1)将300kg聚酰亚胺纤维(2.0d
×
51mm)、100kg三维卷曲中空涤纶纤维(5d
×
60mm)、和600kg天丝纤维(1.5d
×
38mm)送入粗开松机中,使块状卷曲压实的纤维得到初步开松,粗开松机转速为1250转/分钟,然后将初步开松的纤维送入混棉仓进行混合,再经梳理机的给棉辊的作用将纤维梳理成10g/m2的单层纤维网状薄层材料,然后将若干单层纤维网状薄层材料铺设在一起形成纤维网材料(纤维网材料的厚度为12cm),再将纤维网材料依次送入预针刺机和倒针刺机进行预针刺和倒针刺以对纤维网材料进行缠结定型,预针刺工序中针板布针密度为3500枚/米,针刺频率为400刺/分钟,针刺深度为1.7mm;倒刺工序中针板布针密度为4000枚/米,针刺频率为440刺/分钟,针刺深度为2.1mm,得到耐热层半制成纤维网;
83.2)将900kg天丝纤维(1.5d
×
38mm)、100kg三维卷曲中空涤纶纤维(5d
×
60mm)送入粗开松机中,使块状卷曲压实的纤维得到初步开松,粗开松机转速为1540转/分钟,然后将初步开松的纤维送入混棉仓进行混合,再经梳理机的给棉辊的作用将纤维梳理成20g/m2的单层纤维网状薄层材料,然后将若干单层纤维网状薄层材料铺设在一起形成纤维网材料(纤维网材料的厚度为15cm),再将纤维网材料依次送入预针刺机和倒针刺机进行预针刺和倒针刺以对纤维网材料进行缠结定型,预针刺工序中针板布针密度为3500枚/米,针刺频率
为450刺/分钟,针刺深度为2.2mm;倒刺工序中针板布针密度为4000枚/米,针刺频率为500刺/分钟,针刺深度为2.7mm,得到导液层半制成纤维网;
84.3)将耐热层半制成纤维网和导液层半制成纤维网通过双通道送入正针刺机进行反复针刺,然后再通过倒针刺机进行针刺以使二者通过纤维交叉缠结固定在一起,其中,正刺步骤中针板布针密度为12000枚/米,针刺频率为1200刺/分钟,针刺深度为1.3mm;倒刺步骤中针板布针密度为14000枚/米,针刺频率为1300刺/分钟,针刺深度为1.3mm,然后通过三辊烫光机进行热轧,控制车速为20米/分钟,辊间距为1.3mm,热轧温度为180℃,热轧结束后进行卷绕形成卷材,得到所述纤维复合材料。
85.上述制备得到的纤维复合材料,包括层叠设置的耐热层和导液层;所述耐热层的材料为聚酰亚胺纤维、天丝纤维和三维卷曲中空涤纶纤维,所述导液层的材料为天丝纤维和三维卷曲中空涤纶纤维,以耐热层材料的总重为基准,聚酰亚胺纤维的重量占比为30%,天丝纤维的重量占比为60%,三维卷曲中空涤纶纤维的重量占比为10%,以导液层材料的总重为基准,天丝纤维的重量占比为90%,三维卷曲中空涤纶纤维的重量占比为10%,所述耐热层的孔隙率为82%,导液层的孔隙率为77%,所述耐热层的厚度占耐热层和导液层总厚度的40%,所述耐热层的克重占耐热层和导液层总克重的40%,所述耐热层和导液层总厚度为1.62mm,耐热层和导液层总克重为250g/m2。
86.实施例6
87.本实施例提供一种纤维复合材料,其制备方法包括如下步骤:
88.1)将200kg聚酰亚胺纤维(2.0d
×
51mm)、200kg三维卷曲中空涤纶纤维(5d
×
60mm)、和600kg天丝纤维(1.5d
×
38mm)送入粗开松机中,使块状卷曲压实的纤维得到初步开松,粗开松机转速为1250转/分钟,然后将初步开松的纤维送入混棉仓进行混合,再经梳理机的给棉辊的作用将纤维梳理成20g/m2的单层纤维网状薄层材料,然后将若干单层纤维网状薄层材料铺设在一起形成纤维网材料(纤维网材料的厚度为14cm),再将纤维网材料依次送入预针刺机和倒针刺机进行预针刺和倒针刺以对纤维网材料进行缠结定型,预针刺工序中针板布针密度为3500枚/米,针刺频率为450刺/分钟,针刺深度为2.0mm;倒刺工序中针板布针密度为4000枚/米,针刺频率为490刺/分钟,针刺深度为2.4mm,得到耐热层半制成纤维网;
89.2)将800kg天丝纤维(1.5d
×
38mm)、200kg三维卷曲中空涤纶纤维(5d
×
60mm)送入粗开松机中,使块状卷曲压实的纤维得到初步开松,粗开松机转速为1540转/分钟,然后将初步开松的纤维送入混棉仓进行混合,再经梳理机的给棉辊的作用将纤维梳理成30g/m2的单层纤维网状薄层材料,然后将若干单层纤维网状薄层材料铺设在一起形成纤维网材料(纤维网材料的厚度为16cm),再将纤维网材料依次送入预针刺机和倒针刺机进行预针刺和倒针刺以对纤维网材料进行缠结定型,预针刺工序中针板布针密度为3500枚/米,针刺频率为500刺/分钟,针刺深度为2.5mm;倒刺工序中针板布针密度为4000枚/米,针刺频率为550刺/分钟,针刺深度为3.0mm,得到导液层半制成纤维网;
90.3)将耐热层半制成纤维网和导液层半制成纤维网通过双通道送入正针刺机进行反复针刺,然后再通过倒针刺机进行针刺以使二者通过纤维交叉缠结固定在一起,其中,正刺步骤中针板布针密度为12000枚/米,针刺频率为1200刺/分钟,针刺深度为2.0mm;倒刺步骤中针板布针密度为14000枚/米,针刺频率为1300刺/分钟,针刺深度为2.5mm,然后通过三
辊烫光机进行热轧,控制车速为20米/分钟,辊间距为1.8mm,热轧温度为180℃,热轧结束后进行卷绕形成卷材,得到所述纤维复合材料。
91.上述制备得到的纤维复合材料,包括层叠设置的耐热层和导液层;所述耐热层的材料为聚酰亚胺纤维、天丝纤维和三维卷曲中空涤纶纤维,所述导液层的材料为天丝纤维和三维卷曲中空涤纶纤维,以耐热层材料的总重为基准,聚酰亚胺纤维的重量占比为20%,天丝纤维的重量占比为60%,三维卷曲中空涤纶纤维的重量占比为20%,以导液层材料的总重为基准,天丝纤维的重量占比为80%,三维卷曲中空涤纶纤维的重量占比为20%,所述耐热层的孔隙率为98%,导液层的孔隙率为80%,所述耐热层的厚度占耐热层和导液层总厚度的50%,所述耐热层的克重占耐热层和导液层总克重的50%,所述耐热层和导液层总厚度为1.8mm,耐热层和导液层总克重为300g/m2。
92.实施例7
93.本实施例提供一种纤维复合材料,其制备方法包括如下步骤:
94.1)将200kg聚酰亚胺纤维(2.0d
×
51mm)、200kg三维卷曲中空涤纶纤维(5d
×
60mm)、和600kg天丝纤维(1.5d
×
38mm)送入粗开松机中,使块状卷曲压实的纤维得到初步开松,粗开松机转速为1250转/分钟,然后将初步开松的纤维送入混棉仓进行混合,再经梳理机的给棉辊的作用将纤维梳理成10g/m2的单层纤维网状薄层材料,然后将若干单层纤维网状薄层材料铺设在一起形成纤维网材料(纤维网材料的厚度为12cm),再将纤维网材料依次送入预针刺机和倒针刺机进行预针刺和倒针刺以对纤维网材料进行缠结定型,预针刺工序中针板布针密度为3500枚/米,针刺频率为400刺/分钟,针刺深度为1.7mm;倒刺工序中针板布针密度为4000枚/米,针刺频率为440刺/分钟,针刺深度为2.1mm,得到耐热层半制成纤维网;
95.2)将800kg天丝纤维(1.5d
×
38mm)、200kg三维卷曲中空涤纶纤维(5d
×
60mm)送入粗开松机中,使块状卷曲压实的纤维得到初步开松,粗开松机转速为1540转/分钟,然后将初步开松的纤维送入混棉仓进行混合,再经梳理机的给棉辊的作用将纤维梳理成20g/m2的单层纤维网状薄层材料,然后将若干单层纤维网状薄层材料铺设在一起形成纤维网材料(纤维网材料的厚度为15cm),再将纤维网材料依次送入预针刺机和倒针刺机进行预针刺和倒针刺以对纤维网材料进行缠结定型,预针刺工序中针板布针密度为3500枚/米,针刺频率为450刺/分钟,针刺深度为2.2mm;倒刺工序中针板布针密度为4000枚/米,针刺频率为500刺/分钟,针刺深度为2.7mm,得到导液层半制成纤维网;
96.3)将耐热层半制成纤维网和导液层半制成纤维网通过双通道送入正针刺机进行反复针刺,然后再通过倒针刺机进行针刺以使二者通过纤维交叉缠结固定在一起,其中,正刺步骤中针板布针密度为12000枚/米,针刺频率为1200刺/分钟,针刺深度为1.3mm;倒刺步骤中针板布针密度为14000枚/米,针刺频率为1300刺/分钟,针刺深度为1.3mm,然后通过三辊烫光机进行热轧,控制车速为20米/分钟,辊间距为1.3mm,热轧温度为180℃,热轧结束后进行卷绕形成卷材,得到所述纤维复合材料。
97.上述制备得到的纤维复合材料,包括层叠设置的耐热层和导液层;所述耐热层的材料为聚酰亚胺纤维、天丝纤维和三维卷曲中空涤纶纤维,所述导液层的材料为天丝纤维和三维卷曲中空涤纶纤维,以耐热层材料的总重为基准,聚酰亚胺纤维的重量占比为20%,天丝纤维的重量占比为60%,三维卷曲中空涤纶纤维的重量占比为20%,以导液层材料的
总重为基准,天丝纤维的重量占比为80%,三维卷曲中空涤纶纤维的重量占比为20%,所述耐热层的孔隙率为81%,导液层的孔隙率为81%,所述耐热层的厚度占耐热层和导液层总厚度的45%,所述耐热层的克重占耐热层和导液层总克重的45%,所述耐热层和导液层总厚度为1.65mm,耐热层和导液层总克重为250g/m2。
98.实施例8
99.本实施例提供一种纤维复合材料,其制备方法包括如下步骤:
100.1)将750kg聚酰亚胺纤维(2.0d
×
51mm)、50kg三维卷曲中空涤纶纤维(5d
×
60mm)、和200kg天丝纤维(1.5d
×
38mm)送入粗开松机中,使块状卷曲压实的纤维得到初步开松,粗开松机转速为1250转/分钟,然后将初步开松的纤维送入混棉仓进行混合,再经梳理机的给棉辊的作用将纤维梳理成5g/m2的单层纤维网状薄层材料,然后将若干单层纤维网状薄层材料铺设在一起形成纤维网材料(纤维网材料的厚度为6cm),再将纤维网材料依次送入预针刺机和倒针刺机进行预针刺和倒针刺以对纤维网材料进行缠结定型,预针刺工序中针板布针密度为3500枚/米,针刺频率为350刺/分钟,针刺深度为1.5mm;倒刺工序中针板布针密度为4000枚/米,针刺频率为390刺/分钟,针刺深度为1.9mm,得到耐热层半制成纤维网;
101.2)将950kg天丝纤维(1.5d
×
38mm)、50kg三维卷曲中空涤纶纤维(5d
×
60mm)送入粗开松机中,使块状卷曲压实的纤维得到初步开松,粗开松机转速为1540转/分钟,然后将初步开松的纤维送入混棉仓进行混合,再经梳理机的给棉辊的作用将纤维梳理成10g/m2的单层纤维网状薄层材料,然后将若干单层纤维网状薄层材料铺设在一起形成纤维网材料(纤维网材料的厚度为13cm),再将纤维网材料依次送入预针刺机和倒针刺机进行预针刺和倒针刺以对纤维网材料进行缠结定型,预针刺工序中针板布针密度为3500枚/米,针刺频率为400刺/分钟,针刺深度为2.0mm;倒刺工序中针板布针密度为4000枚/米,针刺频率为450刺/分钟,针刺深度为2.5mm,得到导液层半制成纤维网;
102.3)将耐热层半制成纤维网和导液层半制成纤维网通过双通道送入正针刺机进行反复针刺,然后再通过倒针刺机进行针刺以使二者通过纤维交叉缠结固定在一起,其中,正刺步骤中针板布针密度为12000枚/米,针刺频率为1200刺/分钟,针刺深度为1.5mm;倒刺步骤中针板布针密度为14000枚/米,针刺频率为1300刺/分钟,针刺深度为1.6mm,然后通过三辊烫光机进行热轧,控制车速为20米/分钟,辊间距为0.9mm,热轧温度为180℃,热轧结束后进行卷绕形成卷材,得到所述纤维复合材料。
103.上述制备得到的纤维复合材料,包括层叠设置的耐热层和导液层;所述耐热层的材料为聚酰亚胺纤维、天丝纤维和三维卷曲中空涤纶纤维,所述导液层的材料为天丝纤维和三维卷曲中空涤纶纤维,以耐热层材料的总重为基准,聚酰亚胺纤维的重量占比为75%,天丝纤维的重量占比为20%,三维卷曲中空涤纶纤维的重量占比为5%,以导液层材料的总重为基准,天丝纤维的重量占比为95%,三维卷曲中空涤纶纤维的重量占比为5%,所述耐热层的孔隙率为82%,导液层的孔隙率为63%,所述耐热层的厚度占耐热层和导液层总厚度的30%,所述耐热层的克重占耐热层和导液层总克重的50%,所述耐热层和导液层总厚度为0.9mm,耐热层和导液层总克重为180g/m2。
104.实施例9
105.本实施例提供一种纤维复合材料,其与实施例1相比区别在于将400kg聚酰亚胺纤维替换为300kg聚酰亚胺纤维和100kg聚苯硫醚纤维。
106.实施例10
107.本实施例提供一种纤维复合材料,其与实施例1相比区别在于将400kg聚酰亚胺纤维替换为300kg聚酰亚胺纤维和100kg聚对亚苯基苯并二噁唑纤维。
108.实施例11
109.本实施例提供一种纤维复合材料,其与实施例1相比区别在于步骤2)中将1000kg天丝纤维替换为800kg天丝纤维和200kg棉纤维。
110.实施例12
111.本实施例提供一种纤维复合材料,其与实施例1相比区别在于步骤2)中将1000kg天丝纤维替换为900kg天丝纤维和100kg亚麻纤维。
112.实施例13
113.本实施例提供一种纤维复合材料,其制备方法包括如下步骤:
114.1)将400kg聚酰亚胺纤维(0.89d
×
60mm)和600kg天丝纤维(0.9d
×
60mm)送入粗开松机中,使块状卷曲压实的纤维得到初步开松,粗开松机转速为1250转/分钟,然后将初步开松的纤维送入混棉仓进行混合,再经梳理机的给棉辊的作用将纤维梳理成10g/m2的单层纤维网状薄层材料,然后将若干单层纤维网状薄层材料铺设在一起形成纤维网材料(纤维网材料的厚度为12cm),再将纤维网材料依次送入预针刺机和倒针刺机进行预针刺和倒针刺以对纤维网材料进行缠结定型,预针刺工序中针板布针密度为3500枚/米,针刺频率为400刺/分钟,针刺深度为2.0mm;倒刺工序中针板布针密度为4000枚/米,针刺频率为440刺/分钟,针刺深度为2.4mm,得到耐热层半制成纤维网;
115.2)将1000kg天丝纤维(0.9d
×
60mm)送入粗开松机中,使块状卷曲压实的纤维得到初步开松,粗开松机转速为1540转/分钟,然后将初步开松的纤维送入混棉仓进行混合,再经梳理机的给棉辊的作用将纤维梳理成20g/m2的单层纤维网状薄层材料,然后将若干单层纤维网状薄层材料铺设在一起形成纤维网材料(纤维网材料的厚度为15cm),再将纤维网材料依次送入预针刺机和倒针刺机进行预针刺和倒针刺以对纤维网材料进行缠结定型,预针刺工序中针板布针密度为3500枚/米,针刺频率为450刺/分钟,针刺深度为2.5mm;倒刺工序中针板布针密度为4000枚/米,针刺频率为500刺/分钟,针刺深度为3.0mm,得到导液层半制成纤维网;
116.3)将耐热层半制成纤维网和导液层半制成纤维网通过双通道送入正针刺机进行反复针刺,然后再通过倒针刺机进行针刺以使二者通过纤维交叉缠结固定在一起,其中,正刺步骤中针板布针密度为12000枚/米,针刺频率为1200刺/分钟,针刺深度为1.3mm;倒刺步骤中针板布针密度为14000枚/米,针刺频率为1300刺/分钟,针刺深度为1.3mm,然后通过三辊烫光机进行热轧,控制车速为20米/分钟,辊间距为1.3mm,热轧温度为180℃,热轧结束后进行卷绕形成卷材,得到所述纤维复合材料。
117.上述制备得到的纤维复合材料,包括层叠设置的耐热层和导液层;所述耐热层的材料为聚酰亚胺纤维和天丝纤维,所述导液层的材料为天丝纤维,以耐热层材料的总重为基准,聚酰亚胺纤维的重量占比为40%,天丝纤维的重量占比为60%,以导液层材料的总重为基准,天丝纤维的重量占比为100%,所述耐热层的孔隙率为83%,导液层的孔隙率为73%,所述耐热层的厚度占耐热层和导液层总厚度的45%,所述耐热层的克重占耐热层和导液层总克重的45%,所述耐热层和导液层总厚度为1.5mm,耐热层和导液层总克重为
250g/m2。
118.实施例14
119.本实施例提供一种纤维复合材料,其制备方法包括如下步骤:
120.1)将400kg聚酰亚胺纤维(0.89d
×
60mm)和600kg天丝纤维(0.9d
×
60mm)送入粗开松机中,使块状卷曲压实的纤维得到初步开松,粗开松机转速为1250转/分钟,然后将初步开松的纤维送入混棉仓进行混合,再经梳理机的给棉辊的作用将纤维梳理成10g/m2的单层纤维网状薄层材料,然后将若干单层纤维网状薄层材料铺设在一起形成纤维网材料(纤维网材料的厚度为12cm),再将纤维网材料依次送入预针刺机和倒针刺机进行预针刺和倒针刺以对纤维网材料进行缠结定型,预针刺工序中针板布针密度为3500枚/米,针刺频率为400刺/分钟,针刺深度为1.7mm;倒刺工序中针板布针密度为4000枚/米,针刺频率为440刺/分钟,针刺深度为2.1mm,得到耐热层半制成纤维网;
121.2)将1000kg天丝纤维(0.9d
×
60mm)送入粗开松机中,使块状卷曲压实的纤维得到初步开松,粗开松机转速为1540转/分钟,然后将初步开松的纤维送入混棉仓进行混合,再经梳理机的给棉辊的作用将纤维梳理成20g/m2的单层纤维网状薄层材料,然后将若干单层纤维网状薄层材料铺设在一起形成纤维网材料(纤维网材料的厚度为15cm),再将纤维网材料依次送入预针刺机和倒针刺机进行预针刺和倒针刺以对纤维网材料进行缠结定型,预针刺工序中针板布针密度为3500枚/米,针刺频率为450刺/分钟,针刺深度为2.2mm;倒刺工序中针板布针密度为4000枚/米,针刺频率为500刺/分钟,针刺深度为2.7mm,得到导液层半制成纤维网;
122.3)将耐热层半制成纤维网和导液层半制成纤维网通过双通道送入正针刺机进行反复针刺,然后再通过倒针刺机进行针刺以使二者通过纤维交叉缠结固定在一起,其中,正刺步骤中针板布针密度为12000枚/米,针刺频率为1200刺/分钟,针刺深度为1.3mm;倒刺步骤中针板布针密度为14000枚/米,针刺频率为1300刺/分钟,针刺深度为1.3mm,然后通过三辊烫光机进行热轧,控制车速为20米/分钟,辊间距为1.3mm,热轧温度为180℃,热轧结束后进行卷绕形成卷材,得到所述纤维复合材料。
123.上述制备得到的纤维复合材料,包括层叠设置的耐热层和导液层;所述耐热层的材料为聚酰亚胺纤维和天丝纤维,所述导液层的材料为天丝纤维,以耐热层材料的总重为基准,聚酰亚胺纤维的重量占比为40%,天丝纤维的重量占比为60%,以导液层材料的总重为基准,天丝纤维的重量占比为100%,所述耐热层的孔隙率为76%,导液层的孔隙率为82%,所述耐热层的厚度占耐热层和导液层总厚度的40%,所述耐热层的克重占耐热层和导液层总克重的40%,所述耐热层和导液层总厚度为1.55mm,耐热层和导液层总克重为250g/m2。
124.对比例1
125.本对比例提供一种纤维复合材料,其制备方法与实施例1相比区别在于步骤1)中不加入聚酰亚胺纤维,天丝纤维的加入量为1000kg。
126.对比例2
127.本对比例提供一种纤维复合材料,其制备方法与实施例1相比区别在于步骤1)中不加入天丝纤维,聚酰亚胺纤维的加入量为1000kg。
128.对比例3
129.本对比例提供一种纤维复合材料,其制备方法与实施例1相比区别在于不设置导液层,包括如下步骤:
130.1)将400kg聚酰亚胺纤维(2.0d
×
51mm)和600kg天丝纤维(1.5d
×
38mm)送入粗开松机中,使块状卷曲压实的纤维得到初步开松,粗开松机转速为1250转/分钟,然后将初步开松的纤维送入混棉仓进行混合,再经梳理机的给棉辊的作用将纤维梳理成10g/m2的单层纤维网状薄层材料,然后将若干单层纤维网状薄层材料铺设在一起形成纤维网材料(纤维网材料的厚度为12cm),再将纤维网材料依次送入预针刺机和倒针刺机进行预针刺和倒针刺以对纤维网材料进行缠结定型,预针刺工序中针板布针密度为3500枚/米,针刺频率为400刺/分钟,针刺深度为1.7mm;倒刺工序中针板布针密度为4000枚/米,针刺频率为440刺/分钟,针刺深度为2.1mm,得到耐热层半制成纤维网;
131.2)将耐热层半制成纤维网送入正针刺机进行反复针刺,然后再通过倒针刺机进行针刺,其中,正刺步骤中针板布针密度为12000枚/米,针刺频率为1200刺/分钟,针刺深度为1.3mm;倒刺步骤中针板布针密度为14000枚/米,针刺频率为1300刺/分钟,针刺深度为1.3mm,然后通过三辊烫光机进行热轧,控制车速为20米/分钟,辊间距为1.3mm,热轧温度为180℃,热轧结束后进行卷绕形成卷材,得到所述纤维复合材料。
132.测试例1
133.分别对上述实施例获得的纤维复合材料的平均孔径以及孔隙率进行测试,其中:
134.平均孔径测试:将纤维复合材料裁剪成5个1.5cm直径的圆形,在表面活性剂gq16(厂家南京高谦功能材料科技有限公司,表面张力为16
×
10-3
n/m)里充分浸透30分钟后,将上述圆形样品面朝上放入毛细流动孔隙测试仪的测试槽中,拧紧槽口的盖子后,进行测试(每次试样个数仅1块),测试试样的平均孔径,取5块试样检测结果平均值。
135.孔隙率测试:采用正丁醇浸渍法,将烘干至恒重的纤维复合材料称重m0,然后浸入正丁醇(分析纯级)中12小时,取出,用滤纸吸净复合材料正反表面的液体,称重m1,计算纤维复合材料孔隙率。其中,δ=(m
1-m0)/ρv
×
100%,δ为孔隙率,ρ为正丁醇的密度,v为纤维复合材料的表观体积。
136.测试结果如表1所示。
137.表1
138.[0139][0140]
测试例2
[0141]
分别对上述实施例和对比例获得的纤维复合材料的储油性能、锁油性能和导油性能进行测试,其中:
[0142]
储油性能测试:
[0143]
将纤维复合材料裁切成7mm
×
60mm尺寸,数量4个,放置于标准环境(温度20℃、相对湿度65%)平衡24小时,称重,然后分别通过治具整体压缩至指定厚度(1.1mm),然后浸泡到烟油中(苹果烟油:尼古丁含量0mg,溶剂为丙二醇和丙三醇,体积比为50/50)50分钟,取出悬挂沥油10分钟,将纤维复合材料缓慢从治具中取出,称重,通过质量差计算纤维复合材料单位质量的储油性能,求取平均值,单位为g/g,表示每克纤维复合材料储油的质量。
[0144]
锁油性能测试:
[0145]
将纤维复合材料裁切成7mm
×
60mm尺寸,数量4个,放置于标准环境(温度20℃、相对湿度65%)平衡24小时,称重,然后分别通过治具整体压缩至指定厚度(1.1mm),然后浸泡到烟油中(苹果烟油:尼古丁含量0mg,溶剂为丙二醇和丙三醇,体积比为50/50)50分钟,取出悬挂沥油10分钟,将治具放置于冷冻干燥离心机中离心(20℃、500转/分钟)15分钟,取出治具,将纤维复合材料缓慢从治具中取出,称重,通过质量差计算纤维复合材料单位质量的锁油性能,求取平均值,单位为g/g,表示每克纤维复合材料锁油的质量。
[0146]
导油性能测试:
[0147]
将纤维复合材料裁切成7mm
×
60mm尺寸,数量4个,放置于标准环境(温度20℃、相对湿度65%)平衡24小时,分别通过治具整体压缩至指定厚度(1.1mm),然后竖直悬挂治具于导液测定仪中;将烟油(苹果烟油:尼古丁含量0mg,溶剂为丙二醇和丙三醇,体积比为50/50)10ml放置在导液测定仪平台上,缓慢上升平台,当治具下端刚一接触到烟油后停止上升并开始计时;纤维复合材料通过毛细作用力、烟油亲和力主动吸附烟油,随着时间变化自身
重量不断增加,并记录纤维复合材料在100s时的重量变化量,求取平均值作为纤维复合材料导油性能,单位为g/100s,表示100s时纤维复合材料导油的质量。
[0148]
测试结果如表2所示。
[0149]
表2
[0150][0151][0152]
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

技术特征:


1.一种纤维复合材料,其特征在于,所述纤维复合材料包括层叠设置的耐热层和导液层;所述耐热层的材料包括耐热纤维和亲水纤维,所述导液层的材料包括亲水纤维,所述耐热纤维包括聚酰亚胺纤维,所述亲水纤维包括天丝纤维。2.根据权利要求1所述的纤维复合材料,其特征在于,以耐热层材料的总重为基准,耐热纤维的重量占比为20%-80%,亲水纤维的重量占比为20%-80%。3.根据权利要求1或2所述的纤维复合材料,其特征在于,所述耐热层和/或导液层的材料中还包括高回弹纤维。4.根据权利要求1-3任一项所述的纤维复合材料,其特征在于,所述高回弹纤维包括中空涤纶纤维,进一步优选的,所述中空涤纶纤维为三维卷曲中空涤纶纤维。5.根据权利要求1-4任一项所述的纤维复合材料,其特征在于,所述耐热纤维还包括聚苯硫醚纤维、芳纶纤维、聚四氟乙烯纤维、碳纤维、金属纤维、聚对亚苯基苯并二噁唑纤维、聚间亚苯基苯并二咪唑纤维中的至少一种;所述亲水纤维还包括棉纤维、亚麻纤维、汉麻纤维、莫代尔纤维、铜氨纤维、竹纤维、海藻纤维、壳聚糖纤维、羧甲基纤维素纤维中的至少一种;以耐热层材料的总重为基准,耐热纤维的重量占比为19.9%-80%,亲水纤维的重量占比为19.9%-80%,高回弹纤维的重量占比为0.1%-20%;以导液层材料的总重为基准,亲水纤维的重量占比为50%-99.9%,高回弹纤维的重量占比为0.1%-50%。6.根据权利要求1-5任一项所述的纤维复合材料,其特征在于,所述耐热层的孔隙率为70%-98%,导液层的孔隙率为50%-82%;以耐热层材料的总重为基准,耐热纤维的重量占比为20%-60%,亲水纤维的重量占比为20%-60%,高回弹纤维的重量占比为10%-20%;以导液层材料的总重为基准,亲水纤维的重量占比为80%-90%,高回弹纤维的重量占比为10%-20%。7.根据权利要求1-6任一项所述的纤维复合材料,其特征在于,所述耐热层的厚度占耐热层和导液层总厚度的30%-60%;所述耐热层的克重占耐热层和导液层总克重的30%-60%;所述耐热层和导液层总厚度为0.9mm-1.8mm,耐热层和导液层总克重为180g/m
2-300g/m2。8.根据权利要求1-7任一项所述的纤维复合材料,其特征在于,所述耐热纤维的长度为38mm-60mm,纤度为0.8d-7.0d,所述亲水纤维的长度为28mm-60mm,纤度为0.9d-2.5d,所述高回弹纤维的长度为38mm-60mm,纤度为3d-10d。9.根据权利要求1-8任一项所述的纤维复合材料,其特征在于,所述耐热纤维的长度为50mm-60mm,纤度为0.8d-1d,所述亲水纤维的长度为50mm-60mm,纤度为0.9d-1.0d。10.一种权利要求1-9任一项所述的纤维复合材料的制备方法,其特征在于,采用针刺工艺制备所述纤维复合材料。11.根据权利要求10所述的制备方法,其特征在于,包括如下步骤:1)对耐热层材料进行开松、混合和梳理,得到单层纤维网状薄层材料,然后将若干单层
纤维网状薄层材料铺设在一起形成纤维网材料,再将纤维网材料进行针刺缠结定型,得到耐热层半制成纤维网;2)对导液层材料进行开松、混合和梳理,得到单层纤维网状薄层材料,然后将若干单层纤维网状薄层材料铺设在一起形成纤维网材料,再将纤维网材料进行针刺缠结定型,得到导液层半制成纤维网;3)将耐热层半制成纤维网和导液层半制成纤维网通过针刺使其结合在一起,然后进行热轧,得到所述纤维复合材料。12.根据权利要求11所述的制备方法,其特征在于,步骤1)中所述单层纤维网状薄层材料的克重为5-20g/m2,纤维网材料的厚度为4-15cm,所述针刺缠结定型步骤包括依次对纤维网材料进行预针刺工序和倒刺工序,优选的,所述预针刺工序中针板布针密度为2000-4000枚/米,针刺频率为350-450刺/分钟,针刺深度为1.5-2.0mm;倒刺工序中针板布针密度为3000-5000枚/米,针刺频率为390-500刺/分钟,针刺深度为1.9-2.5mm;步骤2)中所述单层纤维网状薄层材料的克重为10-30g/m2,纤维网材料的厚度为11-16cm,所述针刺缠结定型步骤包括依次对纤维网材料进行预针刺工序和倒刺工序,优选的,所述预针刺工序中针板布针密度为2000-4000枚/米,针刺频率为400-500刺/分钟,针刺深度为2.0-2.5mm;倒刺工序中针板布针密度为3000-5000枚/米,针刺频率为450-550刺/分钟,针刺深度为2.5-3.0mm;步骤3)中所述针刺步骤包括正刺步骤和倒刺步骤,优选的,正刺步骤中针板布针密度为10000-15000枚/米,针刺频率为1000-1400刺/分钟,针刺深度为1.0-2.0mm;倒刺步骤中针板布针密度为12000-16000枚/米,针刺频率为1000-1400刺/分钟,针刺深度为0.9-2.5mm;所述热轧通过三辊烫光机进行,控制车速为20-50米/分钟,辊间距为0.9-1.8mm,热轧温度为160-180℃;热轧结束后还包括将纤维复合材料进行卷绕形成卷材的步骤。13.一种导液元件,其特征在于,所述导液元件材料为权利要求1-9任一项所述的纤维复合材料或权利要求10-12任一项所述的制备方法制备得到的纤维复合材料。14.一种发热组件,其特征在于,包括权利要求1-9任一项所述的纤维复合材料以及与所述耐热层接触的发热体。15.一种雾化器,其特征在于,所述雾化装置具有权利要求14所述的发热组件。16.一种电子雾化装置,其特征在于,包括权利要求15所述的雾化器。

技术总结


本发明涉及电子烟导油材料技术领域,具体涉及一种纤维复合材料及其制备方法和应用。本发明提供的纤维复合材料,所述纤维复合材料包括层叠设置的耐热层和导液层;所述耐热层的材料包括耐热纤维和亲水纤维,所述导液层的材料包括亲水纤维,所述耐热纤维包括聚酰亚胺纤维,所述亲水纤维包括天丝纤维。本发明提供的纤维复合材料通过在耐热层中设置特定的聚酰亚胺纤维和天丝纤维,同时配合导液层的天丝纤维,可大大提升复合材料的导油性能,同时获得的复合材料还具有与现有导油材料相似,甚至更优的储油、锁油性能。锁油性能。锁油性能。


技术研发人员:

李鑫 冯大利 周宇 李伟

受保护的技术使用者:

深圳麦克韦尔科技有限公司

技术研发日:

2022.08.03

技术公布日:

2022/10/25

本文发布于:2024-09-22 11:23:52,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/4/8508.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:纤维   针刺   耐热   材料
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议