重质芳烃的歧化和烷基转移

著录项
  • CN201780061362.3
  • 20170210
  • CN109803944A
  • 20190524
  • 埃克森美孚化学专利公司
  • T·E·德特简;J·S·阿比先达尼
  • C07C6/12
  • C07C6/12 C07C5/27 C07C15/04 C07C15/06 C07C15/08 C07C7/20 B01J29/44 B01J29/46 B01J29/40

  • 美国得克萨斯
  • 美国(US)
  • 20161004 US62/403,748
  • 中国国际贸易促进委员会专利商标事务所
  • 夏正东
  • 20190403
摘要
本发明公开了一种制备对二甲苯的方法,包括以下步骤:(a)在有效气相甲苯歧化条件下使包含甲苯的原料与第一催化剂接触以使所述甲苯歧化并产生包含苯、未反应的甲苯和比平衡量更多对二甲苯的第一产物;和(b)在有效C9+烷基转移条件下,在具有0?10氢气/烃摩尔比的0wt%或更多氢气存在下,使包含C9+芳烃和苯的原料与第二催化剂接触,以使所述C9+芳烃烷基转移和产生包含二甲苯的第二产物。
权利要求

1.一种由C9+芳烃生产二甲苯的方法,该方法包括:

(a)在0wt%或更多氢气的存在下在有效气相甲苯歧化条件下,使包含甲苯的第一原料与第一催化剂接触,以使至少部分所述甲苯歧化并产生包含对二甲苯的第一产物;和

(b)在0wt%或更多氢气的存在下在有效液相C9+烷基转移条件下,使包含C9+芳烃和甲苯和/或苯的第二原料与第二催化剂接触,以使至少部分所述C9+芳烃烷基转移并产生包含二甲苯的第二产物。

2.权利要求1的方法,其中所述第一种原料包括新鲜甲苯或再循环甲苯。

3.前述权利要求任一项的方法,其中所述第二原料包括新鲜C9+芳烃或再循环C9+芳烃。

4.前述权利要求任一项的方法,其中所述第二原料包括新鲜甲苯或再循环甲苯。

5.前述权利要求任一项的方法,其中所述第二原料包括新鲜苯或再循环苯。

6.前述权利要求任一项的方法,还包括:

(c)从第一产物和/或第二产物中分离任何二甲苯;和

(d)在(c)之后将分离的二甲苯提供到对二甲苯回收单元以回收对二甲苯。

7.前述权利要求任一项的方法,其中第一产物和/或第二产物还包含邻二甲苯和间二甲苯;并且

其中该方法还包括:

(e)分离邻二甲苯和间二甲苯;

(f)在(e)之后将分离的邻二甲苯和间二甲苯异构化以形成另外的对二甲苯。

8.前述权利要求任一项的方法,其中有效气相歧化条件包括:

约200℃至约550℃的温度;

从大约大气压到大约5000psig(100-34576kPa-a)的压力;和

约0至约10的H2与原料中烃的摩尔比。

9.前述权利要求任一项的方法,其中有效液相C9+烷基转移条件是液相和包括:

约200℃至约500℃的温度;

约10MPa-g或更低的总压力;和

约0至约10的H2与原料中烃的摩尔比。

10.前述权利要求任一项的方法,其中第一催化剂包含硅选择性去活化或碳选择性去活化的ZSM-5。

11.权利要求10的方法,其中所述第一催化剂还包含0.01wt%-5wt%金属,该金属选自Pd、Pt、Ni、Re、Sn及其两种或更多种的组合。

12.前述权利要求任一项的方法,其中所述第二催化剂包含分子筛,该分子筛具有MWW框架、*BEA框架、BEC框架、FAU框架或MOR框架中的至少一种,或其两种或更多种的混合物。

13.前述权利要求任一项的方法,其中第二催化剂包括具有MWW框架类型的分子筛,所述分子筛选自MCM-22、MCM-36、MCM-49、MCM-56、MIT-1、EMM-10、EMM-12、EMM-13、ITQ-1,1TQ-2、ITQ-30、UZM-8、UZM-8HS、UZM-37、及其两种或更多种的混合物。

14.一种由C9+芳烃生产二甲苯的方法,该方法包括:

(a)在0wt%或更多氢气的存在下在有效气相甲苯歧化条件下,使甲苯与第一催化剂接触,以使至少部分甲苯歧化并产生包含对二甲苯、苯和剩余甲苯的第一产物;

(b)在0wt%或更多氢气的存在下在有效C9+烷基转移条件下,使C9+芳烃和来自第一产物的至少部分苯和/或甲苯与第二催化剂接触,以使至少部分C9+芳烃烷基转移并产生包含二甲苯的第二产物;和

(c)将对二甲苯从至少第一产物分离。

15.权利要求14的方法,其中(b)中的接触在液相C9+烷基转移条件下进行。

16.权利要求14或15的方法,其中将第一产物提供到在(b)中的接触而不进行中间分离。

17.权利要求14-16任一项的方法,还包括从第一产物中分离苯并将分离的苯的至少一部分提供到在(b)中的接触。

18.权利要求14-17任一项的方法,还包括:

(d)将剩余的甲苯从第一产物分离;和

(e)将分离的甲苯的至少一部分提供到在(b)中的接触或将分离的甲苯再循环至在(a)中的接触。

19.权利要求14-18任一项的方法,还包括从第一产物和第二产物分离对二甲苯。

20.权利要求14-19任一项的方法,其中第一催化剂包含选择性去活化的ZSM-5。

21.根据权利要求20的方法,其中选择性去活化的ZSM-5是硅选择性去活化的ZSM-5或碳选择性去活化的ZSM-5。

22.权利要求21的方法,其中第一催化剂还含有0.01wt%-5wt%第5-11和14族金属,该金属选自Pd、Pt、Ni、Rh、Sn及其两种或更多种的组合。

23.根据权利要求14-22任一项的方法,其中第二催化剂包含分子筛,该分子筛具有MWW框架、*BEA框架、BEC框架、FAU框架或MOR框架中的至少一种,或者其两种或更多种混合物。

24.如权利要求23的方法,其中所述第二催化剂包含具有MWW框架类型的分子筛,该分子筛选自MCM-22、MCM-36、MCM-49、MCM-56、SSZ-25、MIT-1、EMM-10、EMM-10-P、EMM-12、EMM-13、ITQ-1、ITQ-2、ITQ-30、UZM-8、UZM-8HS、UZM-37、及其两种或更多种的混合物。

25.根据权利要求23或24任一项的方法,其中第二催化剂还包含0.01wt%-5wt%第5-11和14族金属,该金属选自Pd、Pt、Ni、Rh、Sn及其两种或更多种的组合。

说明书

重质芳烃的歧化和烷基转移

优先权

本申请要求2016年10月4日提交的申请号为62/403,748的美国临时申请的优先权和权益,其公开内容整体引入本文作为参考。

技术领域

本申请提供了通过在第一催化剂存在下甲苯的选择性歧化,和在第二催化剂存在下C9+芳烃的烷基转移而制备对二甲苯的方法。

背景技术

二甲苯是重要的芳烃,其全球需求正在稳步增长。对于二甲苯(特别是对二甲苯)的需求与对于聚酯纤维和薄膜需求的增加成比例地增加,并且通常以每年5-7%的速率增长。二甲苯和其它芳烃的重要来源是催化重整产物,其通过使石脑油和氢的混合物与强的加氢/脱氢催化剂(例如铂)在中等酸性载体(例如卤素处理的氧化铝)上接触而制备。得到的重整产物是链烷烃和C6-C8芳烃,以及显著数量较重质的芳烃的复杂混合物。在除去轻质(C5-)链烷烃组分后,通常使用多个蒸馏步骤将剩余的重整产物分离成含C7-,C8和C9+的馏分。然后将含C8的馏分进料至二甲苯生产回路中,在那里通常通过吸附或结晶回收对二甲苯,和将所得的贫含对二甲苯的料流进行催化转化,以使二甲苯异构化返回平衡分布并减少乙苯浓度,否则乙苯在二甲苯生产回路中会积聚。

然而,可从重整产物C8馏分中获得的二甲苯的数量是有限的,因此最近炼油厂也关注通过重质(C9+)芳烃(来自重整产物和其他来源)与苯和/或甲苯经含贵金属的沸石催化剂进行烷基转移来生产二甲苯。例如,美国专利US 5,942,651公开了重质芳烃的烷基转移方法,该方法包括使包含C9+芳烃和甲苯的进料与包含约束指数为0.5-3的分子筛(例如ZSM-12)的第一催化剂组合物,和氢化组分在烷基转移反应条件下接触,以产生包含苯和二甲苯的烷基转移反应产物。然后在除去产物中苯共沸物的条件下,使烷基转移反应产物与第二催化剂组合物接触,所述第二催化剂组合物包含约束指数为3至12的分子筛,例如ZSM-5,并且其可以在与第一催化剂组合物分开的床或单独的反应器中。

与重质芳烃烷基转移方法相关的一个问题是催化剂老化,这是因为催化剂随着生产时间的增加而失去活性,往往需要更高的温度来保持恒定的转化率。当达到最高反应器温度时,需要更换或再生催化剂,通常通过氧化。特别地,已发现现有烷基转移催化剂的老化速率强烈地取决于在进料中存在具有诸如乙基和丙基之类的两个或更多个碳原子的烷基取代基的芳族化合物。因此,这些化合物倾向于经历反应例如歧化和脱烷基化/再烷基化,以产生C10+焦炭前体。

为了解决含有高含量乙基和丙基取代基的C9+进料的问题,公开号为US2009/0112034的美国专利申请公开了一种适用于C9+芳族原料与C6-C7芳族原料的烷基转移的催化剂体系,所述催化剂体系包含:(a)第一催化剂,其包含约束指数为3-12的第一分子筛和0.01-5wt%的第6-10族的第一金属元素的至少一种来源;(b)第二催化剂,其包含约束指数小于3的第二分子筛和0-5wt%的第6-10族的第二金属元素的至少一种来源,其中所述第一催化剂与所述第二催化剂的重量比在5:95至75:25的范围内。第一催化剂(其优化用于进料中乙基和丙基的脱烷基化)位于第二催化剂(其优化用于烷基转移)的前面,当它们在氢气存在下开始与C9+芳族原料和C6-C7芳族原料接触时。

然而,尽管有这些和其他进步,现有的C9+芳族转化方法仍存在许多未解决的问题。这些问题之一在于通过烷基转移步骤产生的二甲苯处于平衡浓度,其中对位-异构体通常仅占总异构体混合物的约22%。因此,对二甲苯产量最大化需要在二甲苯生产回路中循环大量C8芳烃。此外,二甲苯异构化过程通常受到关于间位-和/或邻位-二甲苯到所需对位异构体单程转化率的平衡约束的限制,再次导致方法低效。

发明内容

根据本发明,现已发现通过向歧化区供应新鲜甲苯,可以提高C9+芳烃转化过程中的对二甲苯产率和生产效率。通过适当选择歧化催化剂,可以在歧化反应区中将甲苯选择性地转化为对二甲苯和苯。在分离富含对位的二甲苯馏分之后,回收剩余的苯和甲苯作为再循环苯料流和/或再循环甲苯料流。将C9+芳烃组分与再循环苯料流和/或再循环甲苯料流一起提供给液相烷基转移区,以使C9+芳烃组分进行烷基转移以产生额外的二甲苯。在液相中进行烷基转移反应可以在较低苛刻度的反应条件下改善所用催化剂的寿命和/或改善生产具有所需碳数的芳烃(如C8芳烃)的选择性同时使能量消耗最小化。

因此,在一个方面,本说明书涉及由C9+芳烃制备二甲苯的方法。该方法包括如下步骤(a):在0wt%或更多氢气的存在下在有效气相甲苯歧化条件下,使包含甲苯的第一原料与第一催化剂接触,以使至少部分所述甲苯歧化并产生包含对二甲苯的第一产物。该方法还包括步骤(b):在0wt%或更多氢气的存在下在有效液相C9+烷基转移条件下,使包含C9+芳烃甲苯的第二原料与第二催化剂接触,以使至少部分所述C9+芳烃烷基转移并产生包含二甲苯的第二产物。

在第二方面,本说明书涉及由C9+芳烃制备二甲苯的方法,该方法包括步骤(a):在0wt%或更多氢气的存在下在有效气相甲苯歧化条件下,使甲苯与第一催化剂接触,以使至少部分甲苯歧化并产生包含对二甲苯、苯和剩余甲苯的第一产物。在步骤(b)中,在0wt%或更多氢气的存在下在有效C9+烷基转移条件下,使C9+芳烃和来自第一产物的至少部分苯和/或甲苯与第二催化剂接触。在该步骤中,将至少部分C9+芳烃进行烷基转移以产生包含二甲苯的第二产物。在步骤(c)中,至少从第一产物分离对二甲苯。在进一步的步骤中,从第二产物中分离出另外的对二甲苯。

在一个或多个实施方案中,然后可将分离的二甲苯供料至对二甲苯回收单元以回收对二甲苯。

在一个或多个实施方案中,第一催化剂包含二氧化硅选择性去活化或碳选择性去活化的ZSM-5。

在一个或多个实施方案中,第二催化剂包含分子筛,所述分子筛具有MWW框架,*BEA框架,BEC框架,FAU框架或MOR框架中的至少一种,或其两种或更多种的混合物。

附图说明

图1显示了在各种温度和压力条件下液相中进料的摩尔分率的实例。

图2是根据本说明书所述的至少一个实施方案的C9+芳烃烷基转移方法的流程图。

发明详述

定义和概述

如本文所用,周期表族的编号方案如Chemical and Engineering News,63(5),27(1985)中所述。

如本说明书中所使用的,术语“框架类型”以“Atlas of Zeolite FrameworkTypes”,2001中描述的意义使用。

术语“芳族”在本文中根据其本领域公认的范围使用,其包括烷基取代和未取代的单核和多核化合物。

术语“催化剂”可与术语“催化剂组合物”互换使用。

术语“乙基-芳族化合物”是指具有与芳环连接的乙基的芳族化合物。术语“丙基-芳族化合物”是指具有与芳环连接的丙基的芳族化合物。

术语“Cn”烃,其中n是正整数,例如1,2,3,4,5,6,7,8,9,10,11,12,如本文所用,是指每个分子具有n个碳原子的烃。例如,Cn芳烃是指每分子具有n个碳原子的芳烃。术语“Cn+”烃,其中n是正整数,例如,1,2,3,4,5,6,7,8,9,10,11,12,如本文所用,是指每分子的碳原子数至少为n的烃。术语“Cn-”烃,其中n是正整数,例如1,2,3,4,5,6,7,8,9,10,11,12,如本文所用,是指每分子碳原子数不超过n个的烃。

术语“有效气相甲苯歧化条件”是指相关反应在温度和压力的条件下进行,使得反应混合物的至少部分芳族组分处于气相。在一些实施方案中,相对于反应混合物中的全部芳族化合物,气相中芳族组分的摩尔分率可以为至少0.75,例如至少0.85或0.95,至多1(气相中所有芳族组分)。

术语“有效液相C9+烷基转移条件”是指烷基转移反应在温度和压力的条件下进行,使得烷基转移反应混合物的至少部分芳族组分处于液相。在一些实施方案中,相对于全部芳族化合物,液相中芳族化合物的摩尔分率可以为至少0.01,或至少0.05,或至少0.08,或至少0.1,或至少0.15,或至少0.2,或至少0.3,或至少0.4,或至少0.5,并且任选直到基本上所有芳族化合物在液相中。

本文所用的术语“丝光沸石”包括但不限于通过合成混合物组合物的特定选择而制备的具有非常小的晶体尺寸并具有高中孔表面积的丝光沸石,如在WO 2016/126431中所公开的。

本文所用的术语“二甲苯”意指包括邻二甲苯,间二甲苯和对二甲苯的二甲苯异构体的混合物。

本说明书公开了由C9+芳烃制备二甲苯的各种方法。在这些方法中,在0wt%或更多氢气的存在下在有效气相甲苯歧化条件下,使包含甲苯(通常为新鲜和/或再循环甲苯)的第一原料与第一催化剂接触,以使至少部分甲苯歧化并产生包含对二甲苯的第一产物。然后在0wt%或更多氢气的存在下在有效液相C9+烷基转移条件下,将包含C9+芳烃(通常为新鲜和/或再循环C9+芳烃)以及苯和/或甲苯的第二原料与第二催化剂接触,以使至少部分C9+芳烃烷基转移和产生包含二甲苯的第二产物。可以从第一产物和第二产物中回收对二甲苯。

第一和第二催化剂中的每一种可以放置在单独的反应器中,或者如果需要,可以将两种或更多种催化剂放置在同一反应器中。例如,第一和第二催化剂床可以布置在单独的催化剂床中,所述催化剂床在单一反应器中一个堆叠在另一个之上。

甲苯歧化阶段

在本发明方法的第一甲苯歧化阶段,包含甲苯或甲苯料流的第一原料在第一反应区中与包含第一分子筛和任选的一种或多种氢化组分的第一催化剂组合物接触。

可用于第一催化剂组合物的结晶分子筛的实例包括中孔径沸石,例如ZSM-5,ZSM-11,ZSM-22,ZSM-23,ZSM-35,ZSM-48,ZSM-57和ZSM-58。此外,硅铝磷酸盐(SAPO),特别是SAPO-5和SAPO-11(US4,440,871)和铝磷酸盐(ALPO4),特别是ALPO4-5和ALPO4-11(US4,310,440)也是有用的。上述参考文献的全部内容结合到本文中作为参考。优选的中孔沸石包括ZSM-5,ZSM-11,ZSM-12,ZSM-35和MCM-22。最优选的是ZSM-5,优选二氧化硅与氧化铝的摩尔比为至少约5,优选至少约10,更优选至少20。

在甲苯歧化阶段中有用的中孔径分子筛特别是经过改性以降低它们的邻二甲苯吸附速率的那些分子筛,这是因为发现这些分子筛相对于其它二甲苯异构体,对于生产对二甲苯而言更具选择性。通过使分子筛以结合或未结合的形式进行选择性去活化(selectivation),例如硅选择性去活化,碳选择(或结焦)等,可以实现所需的邻二甲苯吸附速率的降低。通过浸渍或多次浸渍的离位方法或修饰选择性去活化的原位方法;或结焦选择性去活化;或这些的组合进行硅选择性去活化。多次浸渍方法公开于例如专利号为US5,365,004;和US5367099;US5382737;US5403800;US5406015;US5476823;US5495059;和US5,633,417的美国专利。其他离位选择性去活化公开于专利号为US5,574,199和US5,675,047美国专利中。修剪选择性去活化公开于,例如专利号为US5,321,183;US5349113;US5475179;US5498814;和US5,607,888的美国专利。其他硅选择性去活化公开于例如专利号为US5,243,117;US 5349114;US5365003;US5371312;US5455213;US5516736;US5541146;US5552357;US5567666;US5571768;US5602066;US5610112;US5612270;US5625104;和US5,659,098的美国专利。结焦选择性去活化公开于专利号为US5,234,875;US4581215;US4508836;US4358395;US4,117,026;和US4,097,543的美国专利。所有这些公开选择性去活化的专利都引入本文作为参考。

特别地,已经发现第一催化剂组合物应具有二甲苯的平衡吸附能力,二甲苯可以是对位,间位,邻位或其混合物,通常是对二甲苯,因为此异构体在最短的时间内达到平衡,其在120℃下和二甲苯压力为4.5±0.8毫米汞柱下测得每100克沸石至少1克,和对于30%二甲苯吸附能力而言的邻二甲苯吸附时间大于50,优选更大超过200,更优选大于1200(在相同的温度和压力条件下)。吸附测量可以在热天平中以重量分析方式进行。吸附测试公开于专利号为US4,117,025;US4159282;US5173461;和Re.31782的美国专利;其中每一个都引入本文中作为参考。

第一催化剂组合物可包括结合或未结合形式的第一分子筛。其中使用粘结剂时,二氧化硅粘结剂可以是优选的。制备二氧化硅结合的ZSM-5的方法公开于,例如,专利号为US4,582,815、US5053374和US5,182,242的美国专利中,引入本文作为参考。在一些实施方案中,如美国专利US 5,665,325中公开的沸石结合的沸石可用于第一催化剂组合物。

除了上述分子筛之外,第一催化剂组合物可包含至少一种氢化组分,例如元素周期表第4-13族的至少一种金属或其化合物。合适的金属包括铂,钯,锡,银,金,铜,锌,镍,镓,钴,钼,铑,钌,锰,铼,钨,铬,铱,锇,铁,镉和其混合物(组合)。金属可以通过阳离子交换或通过已知方法浸渍以催化剂重量的约0.01%至约10%,例如0.01%至约5%的量加入。

在第一反应区中有效实现高对二甲苯选择性和可接受的甲苯转化率水平的合适条件包括反应器入口温度为约200℃至约550℃,优选约300℃至约500℃。压力约为大气压至约5000psig(100至34576kPa-a),优选约20至约1000psig(239至6996kPa-a);WHSV为约0.1至约20,优选约0.5至约10;H2/烃的摩尔比为约0至约20,优选约0至约10。特别地,通常选择条件使得至少甲苯主要在气相中。此方法可以采用连续流动、间歇或流化床操作进行。在一些实施方案中,第一反应区可以在两个或更多个单独的反应器之间分开。在其他实施方案中,下面讨论的第一反应区和第二反应区可以容纳在单个反应器中。

在第一反应区的条件下,至少部分甲苯歧化成为二甲苯的对二甲苯选择性混合物和苯。使用上述选择性催化剂,混合二甲苯中对二甲苯的含量可以为约90%。因此,离开第一反应区的产物主要由富含对二甲苯的二甲苯混合物、苯、低级烷烃和未反应的甲苯组成。因此,歧化产物被送到分离系统,通常是蒸馏装置,其中产物被分离成:

·低级烷烃的气态混合物,其可以回收用作燃料;

·苯料流,如下所述将该苯料流进料到烷基转移反应区;

·未反应的甲苯料流,其至少部分地再循环到第一反应区,但也可以如下所述进料到烷基转移反应区;和

·富含对二甲苯的C8料流,其如下所述进料到对二甲苯回收回路。

C9+芳烃原料

用于本方法的芳族进料包括一种或多种含有至少9个碳原子的芳烃。在典型进料中发现的具体C9+芳族化合物包括均三甲苯(1,3,5-三甲基苯),杜烯(1,2,4,5-四甲基苯),连三甲苯(1,2,4-三甲基苯),假枯烯(1,2,4-三甲基苯),1,2-甲基乙基苯,1,3-甲基乙基苯,1,4-甲基乙基苯,丙基取代的苯,丁基取代的苯和二甲基乙基苯。C9+芳烃的合适来源是富含芳烃的来自任何精炼工艺的任何C9+馏分。该芳烃馏分含有显著部分的C9+芳族化合物,例如至少50wt%,例如至少80wt%的C9+芳族化合物,其中优选至少80wt%,更优选大于90wt%的烃为C9至C12烃。有用的典型精炼馏分包括催化重整产物,FCC石脑油或TCC石脑油。

液相烷基转移阶段

在本发明方法的第二液相烷基转移阶段,将包含C9+芳烃、和甲苯和/或苯、和任选的从歧化产物中回收的部分苯和/或甲苯的第二原料在第二液相烷基转移反应区与第二催化剂组合物接触,其中第二催化剂组合物包含第二分子筛和任选的一种或多种氢化组分。

在一个实施方案中,用于第二催化剂组合物的合适分子筛包括具有框架结构的分子筛,所述框架结构具有12-元环孔通道的三维网络。具有三维12-元环的框架结构的实例是对应于八面沸石的框架结构(例如沸石X或Y,包括USY),*BEA(例如β沸石),BEC(β的多晶型C),CIT-1(CON),MCM-68(MSE),六角形八面沸石(EMT),ITQ-7(ISV),ITQ-24(IWR)和ITQ-27(IWV),优选八面沸石,六角形八面沸石和β(包括β的所有多晶型)。应注意,具有框架结构(其包括12元环孔通道的三维网络)的材料可对应于沸石,硅铝磷酸盐,铝磷酸盐和/或框架原子的任何其它常规组合。

另外或作为替换,合适的烷基转移催化剂包括具有框架结构的分子筛,所述框架结构具有12-元环孔通道的1维网络,其中孔通道的孔通道尺寸为至少6.0埃,或至少6.3埃。孔通道的孔通道尺寸在本文中定义为指可沿通道扩散的最大尺寸球。具有1维12元环孔通道的框架结构的实例可包括但不限于丝光沸石(MOR),沸石L(LTL)和ZSM-18(MEI)。应注意,具有框架结构(其包括12-元环孔通道的1-维网络)的材料可对应于沸石,硅铝磷酸盐,铝磷酸盐和/或框架原子的任何其它常规组合。

另外或作为替换,合适的烷基转移催化剂包括具有MWW框架结构的分子筛。尽管MWW框架结构不具有12元环孔通道,但MWW框架结构确实包括具有类似于12元环开口的特征的表面部位。具有MWW框架结构的分子筛的实例包括MCM-22,MCM-49,MCM-56,MCM-36,EMM-10,EMM-10-P,EMM-13,PSH-3,SSZ-25,ERB-1,ITQ-1,ITQ-2,UZM-8,UZM-8HS,UZM-37,MIT-1和夹层膨胀的沸石。应注意,具有MWW框架结构的材料可对应于沸石,硅铝磷酸盐,铝磷酸盐和/或框架原子的任何其它常规组合。

另外或作为替换,合适的烷基转移催化剂包括酸性微孔材料,其具有对应于12元环或更大环的最大孔通道,和/或其具有至少6.0埃、或至少6.3埃的孔通道尺寸,和/或其具有至少6.0埃尺寸的另一个活性表面。应注意,这种微孔材料可对应于沸石,硅铝磷酸盐,铝磷酸盐和/或不同于分子筛型材料的材料。

分子筛可任选地基于具有等于n的YO2相对X2O3摩尔比的组成来表征,其中X是三价元素,例如铝,硼,铁,铟和/或镓,优选铝和/或镓,和Y是四价元素,例如硅,锡和/或锗,优选硅。例如,当Y是硅且X是铝时,YO2相对X2O3的摩尔比是二氧化硅与氧化铝的摩尔比。对于MWW框架分子筛,n可小于约5O,例如,从约2至小于约50,通常从约10至小于约50,更通常约15至约40。对于具有β和/或其多晶型的框架结构的分子筛,n可为约10至约60,或约10至约50,或约10至约40,或约20至约60,或约20至约50,或约20至约40,或约60至约250,或约80至约250,或约80至约220,或约10至约400,或约10至约250,或约60至约400,或约80至约400。对于具有框架结构FAU的分子筛,n可为约2至约400,或约2至约100,或约2至约80,或约5至约400,或约5至约100,或约5至约80,或约10至约400,或约10至约100,或约10至约80。任选地,上述n值可以对应于MWW,*BEA和/或FAU框架分子筛中二氧化硅与氧化铝的比率的n值。在这些任选的方面,分子筛可任选地对应于硅铝酸盐和/或沸石。

任选地,催化剂包含0.01wt%至5.0wt%,或0.01wt%至2.0wt%,或0.01wt%至1.0wt%,或0.05wt%至5.0wt%,或0.05wt%至2.0wt%,或0.05wt%至1.0wt%,或0.1wt%至5.0wt%,或0.1至2.0wt%,或0.1wt%至1.0wt%的第5-11族金属元素(根据IUPAC周期表)。金属元素可以是至少一种氢化组分,例如选自元素周期表第5-11和14族的一种或多种金属,或这些金属的混合物,例如双金属(或其它多金属)氢化组分。任选地,金属可选自第8-10族,例如第8-10族贵金属。有用金属的具体实例是铁,钨,钒,钼,铼,铬,锰,钌,锇,镍,钴,铑,铱,铜,锡,贵金属如铂或钯,和它们的组合。有用的双金属组合(或多金属组合)的具体实例是其中Pt是金属之一的那些,例如Pt/Sn,Pt/Pd,Pt/Cu和Pt/Rh。在一些方面,氢化组分是钯,铂,铑,铜,锡或其组合。可以根据氢化活性和催化功能性之间的平衡来选择氢化组分的量。对于包含两种或更多种金属的氢化组分(例如双金属氢化组分),第一金属与第二金属的比例可以为1:1至约1:100或更高,优选1:1至1:10。

任选地,合适的烷基转移催化剂可以是分子筛,其约束指数为1-12,任选但优选小于3。约束指数可以通过美国专利US 4016218中公开的方法确定,该方法关于确定约束指数的详细内容引入本文作为参考。

另外或作为选择,可以使用烷基转移催化剂(例如烷基转移催化剂体系),其具有降低的或最小化的脱烷基化活性。催化剂的α值可以提供催化剂对于脱烷基化的活性的指示。在各个方面,烷基转移催化剂可具有约100或更低,或约50或更低,或约20或更低,或约10或更低,或约1或更低的α值。α值试验是催化剂裂化活性的量度和描述于美国专利US3354078及描述于Journal of Catalysis,第4卷,第527页(1965);第6卷,第278页(1966);和第61卷,第395页(1980),每个都引入本文作为参考。本文试验使用的实验条件包括538℃的恒定温度和可变的流速,如Journal of Catalysis,第61卷,第395页详细公开的那样。

除了第二分子筛之外,可能希望在第二催化剂组合物中加入对本发明的烷基转移方法中所用的温度和其它条件具有耐受性的另一种材料。这些材料包括活性和非活性材料和合成或天然存在的沸石,以及无机材料如粘土,二氧化硅,水滑石,钙钛矿,尖晶石,反尖晶石,混合金属氧化物和/或金属氧化物如氧化铝,氧化镧,氧化铈,氧化锆和二氧化钛。无机材料可以是天然存在的,或者是包括二氧化硅和金属氧化物的混合物的凝胶状沉淀物或凝胶形式。

将材料与每种分子筛结合使用,即与其结合或在其合成过程中存在,该材料本身具有催化活性,可以改变催化剂组合物的转化率和/或选择性。非活性材料适合用作稀释剂以控制转化量,使得可以采用经济且有序的方式获得烷基转移产物而无需采用控制反应速率的其它措施。这些催化活性或非活性材料可以掺入例如氧化铝中,以改善催化剂组合物在工业操作条件下的压碎强度。希望提供一种具有良好抗碎强度的催化剂组合物,这是因为在工业用途中,希望防止催化剂组合物破碎成粉末状材料。

可以与每种分子筛复合作为催化剂组合物的粘结剂的天然粘土包括蒙脱石和高岭土系列,该系列包括亚膨润土,和通常称为Dixie,McNamee,Georgia和Florida粘土的高岭土或其他其中主要矿物成分是埃洛石,高岭石,地开石,珍珠陶土或铝土矿的其它粘土。这些粘土可以原始开采的原生状态使用或最初进行煅烧,酸处理或化学改性。

除了前述材料之外,每种分子筛(和/或其他微孔材料)可以与粘结剂或基质材料,例如选自如下的无机氧化物复合:二氧化硅,氧化铝,氧化锆,二氧化钛,氧化钍,氧化铍,氧化镁,氧化镧,氧化铈,氧化锰,氧化钇,氧化钙,水滑石,钙钛矿,尖晶石,反尖晶石及其组合,如二氧化硅-氧化铝,二氧化硅-氧化镁,二氧化硅-氧化锆,二氧化硅-氧化钍,二氧化硅-氧化铍,二氧化硅-二氧化钛,和三元组合物,例如二氧化硅-氧化铝-氧化钍,二氧化硅-氧化铝-氧化锆,二氧化硅-氧化铝-氧化镁和二氧化硅-氧化镁-氧化锆。也可以采用胶体形式提供至少一部分前述多孔基质粘结剂材料以促进催化剂组合物的挤出。

在一些方面,可以使用分子筛(和/或其他微孔材料)而无需另外的基质或粘结剂。在其他方面,分子筛/微孔材料可以与粘结剂或基质材料混合,使得最终催化剂组合物含有用量为5-95wt%和典型地10至60wt%的粘结剂或基质材料。

在使用之前,可以使用催化剂组合物的蒸汽处理以使催化剂组合物的芳族氢化活性最小化。在汽蒸过程中,在100至2590kPa-a的压力下,催化剂组合物通常与5至100%蒸汽在至少260℃至650℃的温度下接触至少1小时,特别是1至20小时。

可以通过任何方便的方法将氢化组分掺入催化剂组合物中。这种掺入方法可包括共结晶,交换到催化剂组合物中,液相和/或气相浸渍,或与分子筛和粘结剂混合,和它们的组合。例如,在铂的情况下,可以通过采用含有离子(其包含铂金属)的溶液处理分子筛,将铂氢化组分掺入催化剂中。用于采用铂浸渍催化剂的合适铂化合物包括氯铂酸,氯化亚铂和含有铂氨络合物的各种化合物,例如Pt(NH3)4Cl2.H2O或者(NH3)4Pt(NO3)2.H2O。钯以类似方式浸渍在催化剂上。

或者,当分子筛与粘结剂复合时,或者在分子筛和粘结剂通过挤出或造粒形成颗粒之后,可以将氢化组分的化合物加入到分子筛中。仍然另一种选择可以是使用是氢化组分和/或包含氢化组分的粘结剂。

在采用氢化组分的处理之后,通常通过在65℃至160℃,通常110℃至143℃的温度下、在100到200kPa-a的压力下加热至少1分钟并且通常不长于24小时而干燥催化剂。此后,分子筛可以在干燥气体如空气或氮气的料流中在260℃至650℃的温度下煅烧1至20小时。煅烧通常在100至300kPa-a的压力下进行。

此外,在使催化剂组合物与烃进料接触之前,氢化组分可任选地被硫化。这通过使催化剂与硫源(例如硫化氢)在约320℃至480℃的温度下接触而方便地完成。硫源可以经由载气如氢气或氮气与催化剂接触。硫化本身是已知的,并且在知悉本发明公开内容的情况下,本领域技术人员可以完成氢化组分的硫化而没有超出常规实验的付出。

通常,液相烷基转移方法中使用的条件可包括约400℃或更低,或约360℃或更低,或约320℃或更低,和/或至少约100℃,或至少约200℃,例如100℃至400℃,或100℃至340℃,或230℃至300℃的温度;2.0MPa-g至10.0MPa-g,或3.0MPa-g至8.0MPa-g,或3.5MPa-g至6.0MPa-g的压力;H2:烃摩尔比为0至20,或0.01至20,或0.1至10;进料至反应器的全部烃进料的重时空速(“WHSV”)为0.1-100hr-1,或1-20hr-1。任选地,烷基转移过程中的压力可以为至少4.0MPa-g。应注意在反应过程中不一定需要H2,因此任选地可以在不引入H2的情况下进行烷基转移。在反应环境中存在显著量液相时可以在固定床条件、流化床条件或其它合适的条件下将进料暴露于烷基转移催化剂。

除了保持在上述一般条件之外,还可以选择烷基转移条件,使得反应器中所需量的烃(反应物和产物)处于液相。现在参考图1,其中图1显示了在几个条件下对于进料应当存在的液体量的计算,该进料对应于甲苯和均三甲苯的1:1混合物,该条件被认为是潜在的烷基转移条件的代表。图1中的计算显示了液相中的摩尔分率随温度的变化。图1中示出的三组独立的计算对应于含有规定压力的容器,其基于将规定的相对摩尔体积的甲苯/均三甲苯进料和H2引入反应器中。一组数据对应于在600psig(~4MPa-g)下甲苯/均三甲苯进料和H2的1:1摩尔比。第二组数据对应于在600psig(~4MPa-g)下甲苯/均三甲苯进料和H2的2:1摩尔比。第三组数据对应于在1200psig(~8MPa-g)下甲苯/均三甲苯进料和H2的2:1摩尔比。

如图1所示,低于约260℃的温度可导致在所有计算条件下形成大量液相(液体摩尔分率至少为0.1),该条件包括较低压力(600psig)和进料相对氢气的比值较低(1:1)的组合,如图1中所示。应注意,基于进料相对氢气的比值为1:1,总压力600psig对应的芳族进料的分压为约300psig。高达约320℃的较高温度也可具有液相(至少0.01摩尔分率),这取决于环境中反应物的压力和相对量。更一般地,例如高达360℃或高达400℃或更高的温度也可用于液相烷基转移,只要反应环境中的温度和压力的组合可导致液体摩尔分率至少为0.01。应注意,常规的烷基转移条件通常包括高于350℃的温度和/或低于4MPa-g的压力,但是这种常规的烷基转移条件不包括导致液体摩尔分率为至少0.01的压力和温度的组合。

从液相烷基转移方法的所产生的流出物,相对于流出物中烃的总重量,可具有至少约4wt%,或至少约6wt%,或至少约8wt%,或至少约10wt%的二甲苯产率。烷基转移流出物的其它主要组分包括苯,甲苯和残余的C9+芳烃。使用与用于分离甲苯歧化阶段的产物的分离系统相同或不同的分离系统可以实现这些组分的分离。特别是,二甲苯可以回收并提供给对二甲苯回收回路,而苯和残余的C9+芳烃可以再循环到液相烷基转移反应器中和甲苯可以被除去,且再循环至歧化反应或液相烷基转移反应、或再循环至这两者。

现在参考图2,显示了由C9+芳烃制备二甲苯,和特别地对二甲苯的本发明方法的一个实施方案。通过管线64将新鲜甲苯进料(和任选地再循环甲苯,未显示)供应至气相歧化反应区50,其任选接收氢气供应(未显示)。歧化反应区50容纳第一催化剂组合物52,其包含具有中等孔径的分子筛,例如ZSM-5。分子筛可以采用硅或碳选择性去活化,并含有任选的氢化金属,例如铂。歧化反应区50在气相歧化条件下操作,使得将至少一些甲苯歧化以产生包括二甲苯,苯和未反应的甲苯的第一产物。产生的二甲苯具有多于平衡量的对二甲苯和低于平衡量的邻二甲苯和/或间二甲苯异构体。

来自歧化反应区50的流出物在管线51中收集并进料到分馏系统57,在那里通过管线66除去包括氢气在内的轻质气体,并通过管线77除去苯。在管线72中收集C9+芳烃并将其进料至烷基转移反应区55。在一些实施方案中(未显示),通过管线77除去的部分苯也作为再循环苯进料到烷基转移反应区55。另外,残留的甲苯经管线74作为到烷基转移反应区55的进料除去,或作为再循环到歧化反应区50(未示出)。富含对-二甲苯的C8组分在分馏系统57中通过管线76分离,以回收所需的/对二甲苯产物。重质物在管线中78回收作为燃料使用或用于另一种用途。

烷基转移反应区55容纳包含分子筛的第二催化剂68组合物。分子筛的约束指数为1-12,优选约束指数小于3,例如β或MCM-49,和氢化组分,例如铂或钯。烷基转移反应区55保持在至少部分液相或液相条件下,该条件能有效地将由管线71供应的新鲜C9+芳烃和通过管线72供应的再循环C9+芳烃和通过管线74供应的至少部分再循环甲苯进行烷基转移,以产生包含二甲苯异构体的平衡混合物的混合物。任选地,新鲜甲苯(未显示)可以与通过管线74的再循环甲苯一起提供给烷基转移反应器55。来自烷基转移反应区55的流出物在管线56中收集并通常在与管线51中来自歧化反应区50的流出物组合之后进料到分馏系统57。

在管线76中收集的富含对二甲苯的C8料流通常具有高于平衡量(高于24wt%)至高达约60wt%的对二甲苯。这种富含对二甲苯的C8料流最初提供到二甲苯回收单元59,例如,对二甲苯萃取单元或模拟移动床塔(SMB)25,其中将二甲苯选择性地吸附和,在用合适的解吸剂,例如对二乙基苯,对二氟苯,二乙基苯或甲苯或其混合物处理之后,经管线62回收用于进一步纯化。在分离对二甲苯后,剩余的贫含对二甲苯的料流,其包含间二甲苯、邻二甲苯和乙苯,通过管线63进料到二甲苯异构化部分(未示出),该部分可以在气相或液相中操作以将贫含对二甲苯的料流中的二甲苯返回到平衡浓度,在异构化流再循环回SMB 25之前。

虽然已经描述和说明了特定实施例,但是本领域普通技术人员将理解,本公开适用于不必在此示出的变型。因此,为了确定本发明的范围,应仅参考所附权利要求书。

本文引用的所有专利,专利申请,测试程序,优先权文件,文章,出版物,手册和其他文件完全引入作为参考,其范围是在这些公开内容与本公开内容不矛盾和允许这种引入的所有权限内的范围。

当本文列出数值下限和数值上限时,涵盖从任何下限到任何上限的范围。

尽管已经具体描述了说明性实施例,但是应该理解,在不脱离本公开的精神和范围的情况下,本领域技术人员可以明白并且可以容易地进行各种其他修改。因此,并不意味着所附权利要求的范围限于本文阐述的示例和描述,而是权利要求被解释为包含可专利新颖性的所有特征,包括将被本领域普通技术人员视为其等同物的所有特征。

本文发布于:2024-09-25 01:19:49,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/4/71742.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议