润滑油组合物用的混合的乙烯α-烯烃共聚物多官能粘度改进剂

著录项
  • CN93120879.3
  • 19931210
  • CN1089300
  • 19940713
  • 埃克森化学专利公司
  • D·Y-L·春戈;P·布赖斯;S·J·西瑞斯;M·J·斯察格林斯基;J·B·加德纳
  • C10M143/02
  • C10M143/02 C10N30/02

  • 美国新泽西
  • 美国,US
  • 19921211 US07989418
  • 中国国际贸易促进委员会专利商标事务所
  • 陈季壮
摘要
本发明涉及包括衍生的乙烯α-烯烃共聚物A和B的新型多官能粘度改进剂。所述A共聚物包括约30—约60wt%由乙烯衍生的单体单元,和所述B共聚物包括约60—约80wt%由乙烯衍生的单体单元。
权利要求

1、多官能粘度指数改进剂组合物,它包括一种衍生的乙烯α-烯烃共聚物A和衍生的乙烯α-烯烃共聚物B的混合物,所述A和B衍生的共聚物:

(a)以A∶B的共混重量比约2.3∶1-约0.18∶1存在于所述混合物中,以及(b)由数构分子量约20,000-约100,000的共聚物衍生,其中

A.衍生的共聚物A包括以下加合物:

(ⅰ)包括约30-约60wt%由乙烯衍生的单体单元和约70-约40wt%由α-烯烃衍生的单体单元并用单一或二羧酸物官能化的乙烯α-烯烃共聚物;以及

(ⅱ)至少一种亲核胺;以及

B.衍生的共聚物B包括以下加合物:

(ⅰ)包括约60-约80wt%由乙烯衍生的单体单元和约40-约20wt%由α-烯烃衍生的单体单元的乙烯α-烯烃共聚物;以及

(ⅱ)至少一种亲核胺;条件是在所述A和B衍生的共聚物中乙烯衍生的单体单元的各重量百分比含量相差至少5wt%。

2、权利要求1的组合物,其中所述A和B衍生的共聚物是 由用单一或二羧酸物官能化的共聚物衍生的,该单一或二羧酸物是由至少一种单不饱和的二羧酸反应物衍生的,后者选自:

(ⅰ)单不饱和C 4-C 10二羧酸,其中(a)羧基连到邻碳原子上和(b)所述邻碳原子的至少一个是所述单不饱和键的一部分;

(ⅱ)、(ⅰ)的酸酐;

(ⅲ)单不饱和的C 3-C 10单羧酸,其中碳-碳双键将烯丙基共轭到羧基上。

3、权利要求1或2中任一项的组合物,还包括油。

4、权利要求1或2中任一项的组合物,其中所述混合物是固体颗粒构型。

5、权利要求1或2中任一项的组合物,其中亲核胺选自亚烷基多胺、含一个伯胺基和一个叔胺基的烃基二胺、含一个伯胺和一个仲胺基的烃基二胺、氨基芳基多胺、氨基醇及其混合物。

6、权利要求1的组合物,它还包括含烃基取代的琥珀酸酐的分子量生长调节剂。

7、权利要求1的组合物,它用含C 12-C 16烃基取代的琥珀酸酐的封端剂后处理。

8、权利要求1或2中任一项的组合物,其中所述混合物溶于含润滑油流动改进剂的油中。

9、权利要求1、2、4或6-8中任一项的组合物,它还包括油和无灰分散剂。

10、一种含有以混合物的重量计约70-约15wt%组分A和约85-约30wt%组分B的混合物的组合物,其中

组分A包括数均分子量约20,000-约1000,000且含约40-约60wt%由乙烯衍生单体单元和约60-约40wt%由α-烯烃衍生的单体单元并用单一或二羧酸物官能化的乙烯α-烯烃共聚物,以及

组分B包括数均分子量约20,000-约100,000且含约65-约80wt%由乙烯衍生的单体单元和约20-约40wt%由α-烯烃衍生的单体单元并用单一或二羧酸物官能化的乙烯α-烯烃共聚物。

说明书

本发明涉及用于石油、特别是润滑油的多官能粘度改进剂(MFVM),其官能化的中间体,以及制备这备两种物质的方法。

稠化润滑油一般用两个号表示,例如10w30,5w30等等。稠化规定中的第一个号数涉及按冷曲轴模拟器(CSS)在高剪切速率下测定那种稠化油的最低温度(如-20℃)粘度要求,而稠化规定中的第二个号涉及高温(如100℃)粘度要求。因此,每种具体的稠化油需要同时满足这两种严格的低温和高温粘度要求,以便符合给定的稠化油规定。这样的要求例如在SAE说明书中做了规定。这里所用的“低温”意指一般约-35℃-约-5℃的温度;“高温”意指一般至少约100℃。

高温粘度规定(如于100℃)旨在防止在内燃机操作过程中油变得太稀造成过度磨损和油耗。最大的低温粘度规定旨在促进冷天气内燃机起动和确保可泵性,即冷油应易于流到油泵中,否则内燃机会因不能充分润滑而破损。

润滑油的粘度特性用油(如S150N)的中性值表示,较高中性值意指在给定温度下有较高粘度。有时,配制者需要将两种不同中性值的油(粘性不同)混合,以获得具有介于混合油诸组分的粘性之间的中间粘性的油。因此,中性值规定给配制者提供了以简单方式获得可预测粘度的所需基础油。遗憾的是,仅混合不同粘度特性的油一般不能使配制者满足稠化油的低温和高温粘度规定。配制者的实现此目的主要手段是采用通常称作粘度指数改进剂(即V.I.改进剂)的添加剂。

通常,单官能V.I.改进剂是油溶性长链聚合物。多官能VI改进剂(MFVI或MFVM)是油溶性聚合物,后者经化学方法改性,例如官能化和衍生作用以赋予分散性以及改进粘度。大尺寸的MFVI聚合物能使其显著提高基础油的运动粘度,即使在低浓度下亦如此。但是,由于含MFVI的高聚物溶液是非牛顿特性的,它们往往得到比在高剪切环境下预期要低的粘度,原因是聚合物在高剪切流场合中成行排布(alignment)。因此,MFVI对基础油低温粘度(即CCS粘度)的影响(即提高)要比高温粘度的影响低的多。所以,要限制V.I.改进剂的用量,为此,配制者可使用给定混合油以满足目的稠化油的低温和高温粘度规定。

因此,上述关于稠化油的粘度规定被视为MFVI含量越来越高时对抗性亦越来越高。例如,如果为获得高温时高粘度而使用大量的MFVI,则该油现将超过低温规定。在另一例子中,对具体添加剂包 装(ad-pack)和基础油来说,配制者可能易于满足10w30油的要求但不满足5w30油的要求。在这些条件下,配制者可能例如通过提高混合油中低粘度油的比例来降低基础油的粘度,以补偿因V.I.改进剂引起的低温粘度增大,从而满足所需低温和高温粘度要求。但是,提高混合油中低粘度油的比例反过来又会对配制者带来一系列新的局限,因为在柴油机使用方面,低粘性基础油不如较粘性油理想,更不用说粘性油了。

此外,使配制者的任务变得复杂的是分散添加剂会对稠化油的粘性特征有影响。与MFVI相反,该分散剂分子小的多。因此,分散剂的剪切敏感性小的多,从而对低温CCS粘度的影响(相对于它对基础油的高温粘度而言)比V.I.改进剂要大。此外,较小分散剂分子对基础油高温粘度的影响比MFVI要小的多。因此,因分散剂引起的低温粘性增加值会超过因V.I.改进剂引起的低温粘性增加,这对由MFVI得到的高温粘性按比例增大无益。所以,由于分剂引起的低温粘性增大会使油的低温粘度达到最大低温粘限,因此为有效地满足高温粘度要求、特别是满足低温粘度要求而加入足够量的MFVI就更困难了。因此,配制者又要被迫转换到使用较高比例的低粘性油的不理想的手段以允许加入必要量的MFVI改进剂而不超过低温粘限。

按照本发明,提供了已发现具有固有特性的MFVI改进剂,这些改进剂对低温粘性增大没有什么影响,而与现有技术的MFVI改 进剂相比,对高温粘度增大影响较大。此外,提供这些优点的同时仍能维持由衍生法取得的分散力的附加优点。这使得配制者在缺少有利的高温和低温特性时仍能使用较高的基本油料平均中性值。

所以,本发明的主要目的是提供改进了特性的官能化共聚物,后者可作为多官能粘度改进剂用于润滑油。

美国专利3,697,429公开了含粘度指数改进量的油溶性聚合物的润滑油组合物,它首先包括乙烯跟乙烯含量为50-95摩尔%(40-83重量%)的C3-18烯烃的共聚物,以及其次乙烯跟乙烯含量5-80摩尔%(3-70重量%)的C3-18α-烯烃的共聚物。第一种共聚物的乙烯含量比第二种共聚物的乙烯含量至少高5摩尔%(4重量%)。通过混合高含量和低含量乙烯共聚物,制得了具有有利特性的粘度改进剂。没有透露这些聚合物的官能化和衍生情况。

美国专利5,068,047公开了某些特殊类型的降解乙烯共聚物,作为含油组合物的粘度指数改进剂添加剂。所述未降解的共聚物具有窄的分子量分布,并由嵌段共聚物链的分子内不均匀和分子内均匀的组分构成。

美国专利4,735,736公开了用作粘度指数改进剂的接枝油溶性烃聚合物,例如含马来酐之类的不饱和酸物质的乙烯-丙烯聚物,优选方法是在素炼机或挤出机中固态接枝,然后与多胺、优选伯-叔多胺反应。

美国专利4,780,228公开了在挤出机或素炼机中进一步改进 接枝固体聚合物形式的烃聚合物。接枝羧酸(如马来酐)是在自由基引发剂存在下和能防止聚合物交联或形成不溶性凝胶的链中止剂存在下进行的。

美国专利4,517,104公开了用马来酐和过氧化物在润滑油溶液中接枝乙烯-丙烯共聚物。之后,加入链烯基琥珀酸酐、多胺以及任意选加的封端剂。

共同转让共同未决申请U.S.S.N848,817(申请日:1992,12,11,律师卷号E-296)公开了在挤出机中使高或低乙烯含量的共聚物及其混合物与马来酐,过氧化物反应并进行胺化。

美国专利4,863,623公开了用羧酸酰化物接枝乙烯-丙烯共聚物(分子量5,000-500,000),再用氨基芳族多胺化合物进一步衍生。

美国专利5,073,600公开了用羧酸物质接枝乙烯-丙烯共聚物,同时在高机械能装置中在3-15wt%油存在下进行官能化,再用胺官能化该共聚物。

美国专利4,839,074公开了双组分润滑油流动改进剂,它包括富马酸C14二烷基酯/乙酸乙烯酯共聚体和第二组分,后者包括富马酸二烷基酯和乙烯酯的共聚物,其中富马酸用C6到C20醇的混合物酯化。

本发明的一个方面,提供了含有组分A:组分B混合重量比约2.3∶1-约0.18∶1的混合物的组合物。组分A包括数均分子 量为约20,000-约100,000的乙烯α-烯烃共聚物,该共聚物含有约40-约60wt.%由乙烯衍生的单体单元和约60-约40wt%由α-烯烃衍生的单体单元,并用一-或二羧酸物官能化。

组分B包括数均分子量为约20,000-约100,000的乙烯α-烯烃共聚物,该共聚物含有约60-约80wt%由乙烯衍生的单体单元和约40-约20wt%由α-烯烃衍生的单体单元,并用一-或二羧酸物官能化。

本发明的另一方面,提供了MFVI,其制备方法是用亲核胺衍生上述混合物。

附图仅用来说明按本发明实施的组合物的性能,其中:

图1说明了掺入完全配制成油的10w40中多官能粘度改进剂及其在冷曲轴模拟试验中的性能(基本油料比恒定)。

图2说明了在完全配制成油的10w40中多官能粘度改进剂含量,其满足油的运动粘度指标。

图3说明了掺入多种完全配制成油的10w40中的多官能粘度改进剂,以及在倾点和微小旋转粘度测定仪中油的平均性能。

表1说明了按定期动力学粘度测定的多官能粘度改进剂的贮存稳定性。

用于制备本发明共混物的共聚物是包括由乙烯和α-烯烃(典型的C3-C28,优选C3-C18,最优选C3-C8α-烯烃)衍生的单体单元的乙烯α-烯烃共聚物。

尽管不是必须的,但这类聚合物优选具有按X-射线和差示扫描量热法测定低于25wt.%的结晶度。最优选乙烯和丙烯的共聚物。

其它合适的α-烯烃的代表例有1-丁烯、1-戊烯、1-己烯、1-庚烯、1-辛烯、1-壬烯、1-癸烯,等等;以及支链α-烯烃,例如4-甲基-1-戊烯、4-甲基-1-己烯、5-甲基戊烯-1、4,4-二甲基-1-戊烯和6-甲基庚烯-1以及它们的混合物。三-和四-共聚物也包括在“共聚物”范围内。

用于本发明的油溶性乙烯α-烯烃共聚物的数均分子量一般为约20,000-约100,000,优选约25,000-约80,000,最优选约25,000-约50,000。按重均分子量(Mw)与数均分子量(Mn)之比测定,合适的聚合物典型地具有窄的分子量分布(MVD)。最理想的是Mw/Mn低于10、优选低于7、更优选为4或以下的聚合物。这里所用的(Mn)和(Mw)是按汽相渗透压测定法(VPO)、膜渗透压测定法以及凝胶渗透谱法的公知技术测定的。一般说来,通过选择合成条件,例如选择主催化剂和辅催化剂组合,在合成过程中加氢等等,可得到分子量窄分布的聚合物。也可采用后合成处理,例如在过氧化物或空气存在下高温高剪切捏合、热降解、溶液分级沉淀等等获得所需分子量的窄分布和分裂高分子量聚合物到上述分子量。

用于制备本发明组分共混物的共聚物的差别主要在于其乙烯含量。

因此,组分A由低乙烯单体单元含量聚合物得到,而组分B由 高乙烯单体单元含量(聚合物)得到。

更确切地说,低乙烯含量共聚物一般含有约30-约60、优选约40-约50、最佳约42-约46(如44)wt%由乙烯衍生的单体单元;以及一般约70-约40、优选约60-约50、最佳约58-约54(如56)wt.%由α-烯烃衍生的单体单元。

高乙烯含量的共聚物一般含有约60-约80、优选约65-约75,最佳约68-约73(如70)wt.%由乙烯衍生的单体单元;以及一般约40-约20、优选约35-约25、最佳约32-约27(如30)wt%由α-烯烃衍生的单体单元。

上述乙烯含量需要满足以下条件:高和低乙烯含量的共聚物的乙烯含量必须相差至少5、优选至少10、最佳至少15wt.%。

许多这样的乙烯α-烯烃共聚物都是市售的,其组合物和制备方法是本技术领域公知的。代表性例子有:由Exxon化学公司生产的MDV-90-9,含70wt.%乙烯的乙烯-丙烯共聚物,其特征是Mooney粘度,ML1+4于125℃为18;以及,由Exxon化学公司生产的VISTALONR457,44wt%乙烯、乙烯-丙烯共聚物,其特征是Mooney粘度,ML1+4于125℃为28。

为便于讨论,由上述低乙烯含量共聚物得到的共混物组分在此称作组分A,而由上述高乙烯含量共聚物得到的共混物组分在此称作组分B。

如上所示,本发明针对组分A和组分B的共混物。这种共混物 的A∶B的重量比一般为约2.3∶1-约0.18∶1,优选约1.2∶1-约0.25∶1,最佳约0.8∶1-约0.33∶1(如0.428∶1)。

组分A和B的相对量的上述对应范围在此称作“混合比”。这种混合比也适用于官能化的制备中未官能化的高和低乙烯含量的聚合物共混物。为制备本发明的MFVI,先将高和低乙烯α-烯烃共聚物官能化,然后再衍生。

本发明制备的聚合物可进行官能化。所谓官能化意指聚合物被化学改性以便在其结构中至少有一个官能团,后者能与其它物质进行化学反应(如衍生)。

更确切地说,该官能团最好接到聚合物上作为聚合物主链的侧基。

这种官能团一般是极性的,可含有杂原子如O、S、N和/或卤素。

优选的官能化反应是通过用自由基催化剂加自由基使聚合物与含该官能团的官能化合物反应而进行。

本发明最优选的官能化技术是化学改性该聚合物以使其结构内具有含有或由至少一个酰基官能团构成的化学部分,即-C-X,其中X是氢、氮、羟基、氧羟基(如酯)、氧、盐部分-CM,其中M是金属如碱、碱土金属、过渡金属、铜锌等等或两个酰基可通过(X)连接成酸酐。

在这类宽范围的化合物中,最优选的是由单不饱和的单一或二 羧酸及其衍生物(如酯和盐)得到的酰基。

更确切地说,适用于本发明的、用单或二羧酸物(即酸,酸酐,盐或酯)官能化的聚合物包括该聚合物与含有至少一种选自下述物质的单不饱和羧酸反应物的反应产物:(ⅰ)、单不饱和C4-C10二羧酸(优选其中(a)羧基在邻位,即位于邻碳原子和(b)至少一个、优选两个所述邻碳原子是所述单不饱和部分);(ⅱ)、(ⅰ)的衍生物,如酸酐或C1-C5醇衍生的(ⅰ)的单一或二酯;(ⅲ)、单不饱和C3-C10单羧酸,其中碳-碳双键将烯丙基共轭到羧基上,即结构式 一,以及(ⅳ)、(ⅲ)的衍生物,如C1-C5醇衍生的(ⅲ)的单酯。

作为有用的官能化合物的合适的不饱和酸物包括丙烯酸、巴豆酸、甲基丙烯酸、马来酸、马来酐、富马酸、衣康酸、衣康酸酐、柠康酸、柠康酸酐、中康酸、戊烯二酸、氯代马来酸、乌头酸、甲基巴豆酸、山梨酸、3-己烯酸、10-癸烯酸、2-戊烯-1,3,5-三甲酸、肉桂酸和前述酸的低级烷基(如C1-C4烷基)酯,如马来酸甲酯、富马酸乙酯、富马酸甲酯等等。特别优选不饱二羧酸及其衍生物;特别是马来酸、富马酸和马来酐。

如前所述,上述两组分单官能的粘度改进剂可通过几种方法制备。可将官能团单独接枝到各共聚物上,然后将官能化的共聚物以上述混合比机械混合。在实施本发明的优选方法中,这两种共聚物同时官能化,并同时以上述混合比经挤出机、撕捏机或反应器中加料进行共混。

挤出工艺是连续的,而撕捏工艺是分批的。这两种工艺均在聚合物熔体中进行,即聚合物在该设备中高温、高剪切条件下熔化。官能化实质上在无溶剂的条件下进行的。反应器工艺是一种与撕捏机分批法类似的工艺,但聚合物一旦溶于溶剂(如矿物油)便进行官能化。如果需要分子量比所用的共聚物低则挤出机和撕捏机工艺可提供有效的过氧化物或引起共聚物分子量降低的热氧化剂。

可以理解,高和低乙烯含量聚合物共混物可产生乙烯含量的双峰分布,这是制备具有单一平均乙烯含量的单独一种聚合物不能实现的。

自由基引发接枝可在挤出机或撕捏机中的聚合物熔体中进行,或当使用常规间歇式反应器时,聚合物溶于溶剂、优选矿物润滑油中。

自由基接枝优选使用自由基引发剂来进行,例如过氧化物、氢过氧化物和偶氮化合物,优选其沸点高于约100℃,且在接枝温度范围内发生热分解来提供所述自由基。引发剂的用量以聚合物总重计,一般为约0.005%-约1%。

烯属不饱和羧酸物(优选马来酐)的用量以共聚物的重量计,一般为约0.01-约10%,优选0.1%-2.0%。上述羧酸物和自由基引发剂一般以1.0∶1-30∶1、优选3.0∶1-6∶1的重量百分比使用。

当共聚物接枝是在反应器溶剂中进行时,引发剂接枝最好在惰 性气氛下(如氮气保护)进行。当接枝在有空气的条件下进行时,与实质上无氧的惰性气氛下接枝相比,所需接枝聚合物的产率一般由此而下降。接枝时间一般为约0.1-12小时、优选约0.5-6小时,更好0.5-3小时。

在接枝过程中,一般先将共聚物溶液加热到接枝温度,之后搅拌下加所述不饱和羧酸物和引发剂(尽管它们本可以在加热前加入)。反应完毕,利用惰性气体清洗(如氮气喷射)清除过量酸物质。

接枝最好在矿物润滑油中进行,该矿物润滑油在接枝步骤后不必除掉,而可用作下步接枝聚合物与胺物质反应中的溶剂,以及用作目的产物的溶剂以形成润滑添加剂浓缩物。带有接枝羧基的油与胺物质反应时也将转化成相应的衍生物,而这样的衍生物对改进性能用途不大。

在撕捏机中官能化的说明可见美国专利4,735,736;在反应器中将共聚物溶于溶剂(如矿物油)进行官能化的说明可见美国专利4,517,104;这些文献的公开内容并入本文作为参考。

相比之下,在聚合物熔体中,特别是在挤出机中进行反应的特征在于反应速率最大且反应器容积最小(因无稀释溶剂);无溶剂的付反应和停留时间最小(因无溶解和分别在反应前后的回收步骤)。

在共转让的U.S.N848,817(申请日:1992年12月11日,标题为“Multiple  Reaction  Process  in  Melt  Processing  Equipment”,律师卷号:E-296)中公开了挤出机接枝方法,其公开的内容并入本 文作参考。

为了防止或最大限度地减少接枝共聚物的交联或凝胶,尤其是当其随后用带有一个以上的反应性伯或仲氮的胺氨化时,可往官能化聚合物中加入任意选加的酸官能化低分子量烃基组份,以减缓衍生的聚合物分子量生长。这类物质在此称作“生长调节剂”。

合适的生长调节剂有:烃基取代的琥珀酸酐或烃基中有12-49个碳、优选16-49个碳的酸;式RCOOH的长链单羧酸(其中R是C50-400烃基)以及烃基中有50-400个碳的长链烃基取代的琥珀酸酐或酸。

羧酸或酸酐的烃基部分(如链烯基)主要由于其易得且成本低,最好由C2-C5单烯烃得到,所述聚合物一般具有约140-6500(如700-约5000)、最佳700-3000分子量。特别优选分子量为950的聚异丁烯。

衍生的聚合物是一种经过化学改性以便相对于未官能化的聚合物和/或官能化聚合物而言一个或多个官能团显著改性了的聚合物。试图赋予本发明官能化聚合物的主要的新功能是在润滑油组合物中具有分散力。

典型地,通过化学改性官能化聚合物实现衍生作用。

这类衍生的化合物一般含有一个或多个包括胺、羟基、酯、酰胺、亚酰胺、硫代、硫代酰胺基、噁唑啉或由反应性金属或反应性金属化合物得到的盐基在内的基团。

因此,衍生的聚合物可包括上述官能化聚合物与包括胺、醇、氨基醇金属反应物及其混合物在内的亲核反应物的反应产物,以形成油溶性盐、酰胺、亚酰胺、噁唑啉和单一和二羧酸酯、酯或酸酐。

试图赋予衍生的聚合物的优选特性包括改善粘度(如主要是改善粘度,附带改善分散性)。

当聚合物(由其得到粘度改进剂)被官能化和用下述影响分散力的基团衍生时,多官能的粘度改进剂具有附带分散性。

不同类型的MFVI可通过适用于润滑剂组合物的本发明官能化聚合物衍生而制取。优选类型包括用亲核试剂如胺化合物(如含氮化合物)、有机羟基化合物如苯酚和醇和/或碱性无机物衍生的本发明官能化聚合物的反应产物。

更具体地说,含氮或含酯MFVI包括选自本发明的聚合物的油溶性盐、酰胺、亚酰胺、噁唑啉和酯类物质;上述聚合物用单一和二-羧酸或酸酐或其酯衍生物官能化。

至少一种官能化聚合物与胺、醇(包括多醇)、氨基醇等等中的至少一种混合以形成MFVI添加剂组分。

在用于实施本发明的不同的胺中,有一种胺类带有两个或多个伯胺基,其中伯胺基可以是未反应的,或其中胺基之一可以是已反应的。

特别优选的胺化合物具有以下结构式:

(A)亚烷基多胺

其中X是约1-10的整数,约选约2-7,亚烷基是直链或支链C2-7、优选约C2-4亚烷基;

(B)聚亚氧烷基多胺

NH2(-亚烷基-O-亚烷基)mNH2(ⅰ)

其中m值为约3-70、优选10-35;以及

R-(亚烷基(-O-亚烷基)nNH23-6(ⅱ)

其中n值为约1-40,条件是所有n的总合为约3-约70,优选约6-约35,且R是至多10个碳原子的多价饱和烃基(3-6价)。式(ⅰ)或式(ⅱ)中的亚烷基可以是含约2-7个、优选约2-4个碳原子的直链或支链。

以上式(A)的亚烷基多胺的例子有亚甲基胺、亚乙基胺、亚丁基胺、亚丙基胺、亚戊基胺、亚己基胺、亚庚基胺、亚辛基胺、其它多亚甲基胺、这些胺的环状和高级同系物,如哌嗪、氨烷基取代的哌嗪,等等。这些胺的例子有乙二胺、二亚乙基三胺、三亚乙基四胺、丙二胺、二(七亚甲基)三胺、三亚丙基四胺、四亚乙基五胺、三亚甲基二胺、五亚乙基六胺、二(三亚甲基)三胺、2-庚基-3-(2-氨丙基)咪唑啉、4-甲基咪唑啉、1,3-双(2-氨乙基)咪唑啉、嘧啶、1-(2-氨丙基)哌嗪、1,4-双(2-氨乙基)哌嗪、N,N-二甲氨丙基胺、N,N-二辛基乙胺、N-辛基-N′-甲基乙二胺、2-甲基-1-(2 -氨丁基)哌嗪,等等。特别有用的亚乙基胺类例如在化学技术大百科全书中以“亚乙基胺类”篇头做了说明(Kirk和Othmer,第5卷,第898-905页;Interscience  Publishers,New  York(1950)。

以上式(B)的聚亚氧烷基多胺、优选聚亚氧烷基二胺和聚亚氧烷基三胺可具有约200-约4000、优选约400-约2000的平均分子量。优选的聚亚氧烷基多胺包括聚氧乙烯二胺和聚氧丙烯二胺以及平均分子量为约200-2000的聚氧丙烯三胺。聚氧亚烷基多胺是市售的,例如可从Jefferson化学有限公司以商品名“Jeffamines  D230,D-400,D-1000,D-2000,T-403”等等得到。

当然,可用于与官能化聚合物反应的反应性化合物将取决于接枝的官能化合物的性质。就优选接枝的官能化合物马来酐而言,那些便于与酸酐官能团反应的物质是合适的。这包括醇、硫醇和胺,其中优选胺。较优选伯胺,因为形成的酰亚胺产物很稳定。最优选伯胺,RNH2,其中R基含有终产物需要有的官能团。虽然这样的产物含有两个官能团,但通过伯胺反应形成的酰亚胺官能团较为惰性,起着R基中的官能团和聚合物主链之间稳定键连的作用。

通过伯胺的R基中所含的、产物中需要包括的官能团将取决于产物的目的应用。在以下实施例中,说明了作为润滑油用的多官能粘度改进剂的产物的应用。

可使用的伯胺RNH2(其中R基含有叔胺官能团)的例子包括:

N,N-二甲基乙二胺

N,N-二乙基乙二胺

N,N-二甲基-1,3-丙二胺

N,N-二乙基-1,3-丙二胺

4-氨基吗啉

4-(氨甲基)吡啶

4-(2-氨乙基)吗啉

4-(3-氨丙基)吗啉

可使用的伯胺RNH2(其中R基含有仲胺官能团)的例子包括:

N-甲基乙二胺

N-乙基乙二胺

N-苯基乙二胺

N-甲基-1,3-丙二胺

N-苯基-1,2-苯二胺

N-苯基-1,4-苯二胺

1-(2-氨乙基)哌嗪

4-(氨甲基)。

可使用的伯胺RNH2(其中R基含有醇官能团)的例子包括:

乙醇胺

2-氨基-1-丙醇

3-氨基-1-丙醇

2-氨基-1-丁醇

2-氨基苄醇

用于实施本发明的与接枝马来酐反应的优选化合物是4-(3-氨丙基)吗啉和1-(2-氨乙基)哌嗪。

可用于实施本发明的其它胺包括选自以下物质的氨基芳族多胺化合物:

(a)下式表示的N-芳基苯二胺:

其中Ar是芳基且R1是氢,-NH-芳基,-NH-芳烷基,直链或支链C4-C24基团,可以是烷基、链烯基、烷氧基、芳烷基、烷芳基、羟烷基或氨烷基,R2是NH2、-(NH(CH2nm-NH2、CH2-(CH2n-NH2、-芳基-NH2,其中n和m分别是1-10,且R3是氢、烷基、链烯基、烷氧基、芳烷基、C4-24烷芳基。

或下式表示的N-芳基苯二胺:

其中R1、R2和R3是氢或直链或支链C1-10烃基,可以是烷基、链烯基、烷氧基、烷芳基、芳烷基、羟烷基或氨烷基。

(b)下式表示的氨基咔唑

其中R和R1代表氢或烷基、链烯基或C1-C14烷氧基。

(c)下式表示的氨基吲哚:

其中R代表氢或C1-C14烷基,

(d)下式表示的氨基吲唑酮:

其中R是氢或C1-C14烷基,

(e)下式表示的氨基巯基三唑,

以及

(f)下式表示的氨基伯啶:

其中R代表氢或C1-C14烷基或烷氧基。

特别优选的N-芳基苯二胺是N-苯基苯二胺,例如N-苯基-1,4-苯二胺、N-苯基-1,3-苯二胺、N-苯基-1,2-苯二胺、N-萘基-苯二胺、N-苯基萘二胺和N′-氨丙基-N-苯基苯二胺。

其它可使用的胺包括:氨基噻唑类,选自氨基噻唑、氨基苯并 噻唑、氨基苯并噻二唑和氨烷基噻唑;以及下式表示的氨基吡咯:

其中R是C2-6二价亚烷基,R1是氢或C1-C14烷基。

其它可使用的胺包括吩噻嗪和吩噻嗪衍生物,特别是10-氨丙基吩噻嗪、氨基-3-丙基氨基吩噻嗪、N-氨丙基-2-萘胺和N-氨丙基二苯胺以及以下通式的胺:

其中Ar和Ar′与它们所连的氮一起连接成杂环结构,R1是氢原子、C1-C18直链或支链烷基或芳基,X是氢原子、卤素、OH或NH2基,a和b是整数,其中a为0-5,b为0-6,a和b之和≥1。

如上所示,可对高和低乙烯含量的聚合物单独进行官能化,或可将高和低乙烯含量的聚合物以上述混合比进行共混,然后官能化。

如果选择后者,则对共混物进行衍生。如果选择前者,则单独官能化一种聚合物具有另外的选择,即单独衍生和共混最终衍生的产物或共混单独衍生的官能化共聚物和同时衍生共混物。

官能化的乙烯α-烯烃共聚物可用胺在熔体或溶液中进行衍生,然后再在挤出机或撕捏机中进行熔融衍生。

当在挤出机或撕捏机中进行胺化时,条件实质上与官能化步骤的相同。在胺化之前,进行汽提步骤以除去接枝步骤不需要的付产物(因胺化造成不需要的付产物)。

在反应器中进行胺化时,官能化的聚合物溶于溶液(如油),聚合物的溶解量以溶液重量计,典型地为约5-30、优选10-20wt%。

所以,将官能化聚合物于约100℃-250℃、优选170℃-230℃预热,加入所述胺和加入任意选择的生长调节剂,温度维持约1-10小时,通常为约2-约6小时。

业已发现,许多这样的含未反应的伯或仲胺的多官能粘度改进剂经产物凝胶或所得浓缩物于油中粘度增大证明分子量有所提高。为此已发现可采用后处理或用C12-约C16烃取代的二羧酸或酸酐 基将这些产物封端以稳定分子量。

以组合物总重计,微量的、例如0.001-50wt%、优选0.005-25wt%的本发明制得的官能化共混物或衍生的共混物可掺入到占多数量的含油物如润滑油或烃燃料中,掺入量的多少取决于要形成的终产物或添加剂浓缩物。当用于润滑油组合物(如汽车或柴油曲轴箱润滑油)时,衍生的共混物含量一般占组合物总量的约0.01-10wt%,如0.1-6.0wt.%,优选0.25-3.0wt%。

以上油组合物可含有其它常用添加剂,如染料、润滑油流动改进剂(LOFI)、抗磨剂、抗氧剂。其它粘度指数改进剂、分散剂等等。

如前所述,本发明衍生的共混物可以浓缩物的形式使用(例如于矿物润滑油之类的油中约5-约50wt%、优选7-25wt%的浓度),以便于处理;也可以这种形式制备,即在前述油中进行本发明的反应。如果本发明的产物在挤出机或撕捏机中以熔体制备,则将产物造粒,然后将颗粒溶解以制备浓缩物或直接溶于润滑油组合物中。

为了提高用本发明粘度改进剂制得的润滑剂配方的低温性能,可将润滑油流动改进剂(LOFI)加到粘度改进剂浓缩物中,或直接加到配制的润滑油中。

这些润滑油流动改进剂降低了流体流动或可倾倒的温度。代表性的LOFI包括富马酸C6-C18二烷基酯·乙酸乙烯酯共聚物。

优选的润滑油流动改进剂在美国专利4,839,073中做了说明,其公开内容并入本文作为参考。

已经发现,本发明的衍生的共混物在不存在油或存在油(如浓缩物)的条件下交联或凝胶可进一步提高分子量。业已发现,加入无灰分散剂可抑制这种问题。合适的无灰分散剂在美国专利5,102,566中做了公开,其公开内容并入本文作为参考。以共聚物重量计,0.01wt%-50wt%;或以共聚物浓缩物的重量计0.01wt%-5wt%的用量为有效。合适的分散剂包括高分子量链烯基琥珀酰亚胺,例如油溶性聚异丁烯琥珀酸酐与亚乙基胺(如四亚乙基五胺)及其硼酸盐的反应产物。适用于分散剂的聚合物分子量可在700-约3000、优选900-2500的范围内。优选分散剂是分子量为950的硼酸化链烯基琥珀酰亚胺。

本方法的另一优点是它能制备润滑油用的粒状多官能粘度改进剂。多数多官能粘度改进剂是以油溶液形或制备的,并以此形式销售和运输。这显著提高了运输这种物料的成本。另外,要求充分混合,以使起始聚合物主链进入溶液中。用本方法制得的颗粒易于批量运输,不需要油溶液。颗粒还易于溶于润滑油中,与目前混合方法相比,几乎不需要混合。本发明又一方面是共聚物颗粒用物料撒粉,以防止颗粒发粘。隔离剂包括乙烯,醋酸乙烯酯共聚物和硬脂酸钙。

如前所述,上述油组合物可任意选加其它带用添加剂,如倾点抑制剂、抗磨剂、抗氧剂、其它粘度指数改进剂、分散剂、缓蚀剂、消泡剂、洗涤剂、防锈剂、摩擦改进剂,等等。

当组合物含有这些常用添加剂时,它们一般是以一定用量混入 基础油中以有效提供其正常的职能。这些添加剂的代表性有效用量举例如下:

添加剂  wt%活性成分  wt%%活性成分

(宽范围)  (优选)

粘度改进剂  0.01-12  0.01-4

缓蚀剂  0.01-5  0.01-1.5

氧化抑制剂  0.01-5  0.01-1.5

分散剂  0.1-20  0.1-10

倾点抑制剂  0.01-5  0.01-1.5

消泡剂  0.001-3  0.001-0.10

抗磨剂  0.001-5  0.001-2.0

摩擦改进剂  0.01-5  0.01-1.5

分散剂/防锈剂  0.01-10  0.01-3

基础矿物油  余量  余量

这里所用的所有所述wt%是以添加剂加入的活性成分和/或任何添加剂包装总量,或各添加剂的活性成分重量加全部油或稀释剂的重量计。

本发明的衍生的共混物主要用于润滑油组合物,该组合物使用了其中溶解或分散了这些共聚物的基础油。

所以,本发明的添加剂也可适当掺入合成的基础油中。

尽管任何有效量(即分散剂或粘度指数改进分散剂有效量)的本 发明的添加剂都可掺入全部配制的润滑油组合物中,但可以预计,这样的有效量足以提供给所述润滑油组合物典型的添加剂量为约0.01-约10、优选0.1-6.0、更优选0.25-3.0wt%(以所述组合物的重量计)。

就各基本油料而言,例如用本发明的技术改进的润滑油,将会发现存在乙烯的重量百分数特征模型,在此,低温性能(如倾点)在诸如小型旋转粘度仪(MRV  TP-1)之类的缓慢冷却试验中为最大。类似地,存在乙烯含量的重量百分数特征模型,在此,按冷曲轴模拟试验(CCS)测定低温性能为最大。本发明的多官能粘度改进剂在润滑剂组合物中可单独使用,也可与其它未官能化粘度改进剂或其它多官能粘度改进剂一起使用,以便获得最佳低温性能。以下实施例说明了如何最佳改进低温性能以及如何对现有技术进行改进。

以下实施例Ⅰ和Ⅱ说明了本发明可使用的实施方案,其中高乙烯、乙烯-丙烯共聚物和低乙烯、乙烯-丙烯共聚物用马来酐通过热分解过氧化物引发进行的接枝是在双螺杆反向旋转挤出机的第一反应区中进行的。这之后,在第二反应区内用伯胺对接枝的共聚物进行酰亚胺化。

为使共聚物与马来酐进行反应,由Atochem North America生产的LUPERSOLR130用作引发剂。它含有90-95wt%2,5-二甲基-2,5-二(叔丁基过氧)乙炔-3作为活性成分。

使用以下乙烯-丙烯共聚物:

乙烯-丙烯共聚物A:

43wt.%乙烯,数均分子量(Mn)约80,000,熔流速率=14克/10分钟,于230℃、10.0kg载荷下测定,Mooney粘度,ML1+4,125℃=28,由美国Exxon化学公司以VISTALONR457出售。

乙烯-丙烯共聚物B:

70wt%,数均分子量(Mn)约60,000,熔流速率=12克/10分钟,于230℃、2.16kg载荷下测定,由美国Exxon化学公司以MDV90-9生产。

为了酰亚胺化接枝共聚物,由Texaco化学公司购买的4-(3-氨丙基)吗啉用作胺。该胺化合物含有一个伯胺官能团和一个叔胺官能团。当伯胺与接枝马来酐反应形成酰亚胺时,本技术领域专业人员都会知道,聚合物中引入了叔胺官能团。由于其反应成了酰亚胺的,伯胺基的碱性丧失了,但叔胺当然仍保持碱性,并将作为例如碱与酸进行反应。为此,产物酰亚胺-一种显碱性的聚合物可用于汽车润滑油。在本申请书中,叔胺被认为是能与使用过程中油的氧化产生的酸物质反应,由此,降低了部件上沉积的淤渣,从而对降低内燃机部件磨损产生了有利影响。酰亚胺的聚合性还对润滑油的粘度产生了所需改进。这类产物一般称作多官能粘度改进剂,因为当其用作汽车润滑油添加剂时被公认起着一种以上的功用。

通过与该胺或类似胺反应,共聚物A和共聚物B得到的产物可用作多官能粘度改进剂。由共聚物A制得的粘度改进剂具有不同 的配制油低温特性。这是聚合物A结晶度降低了的结果,而结晶度降低又是乙烯和丙烯摩尔含量大致相当造成的,因此使乙烯-丙烯无规共聚物的结晶度降为最低。

实施例Ⅰ

乙烯-丙烯共聚物A由干燥的挤出机以100kg/hr的速率加到挤出机反应器的加料斗中。水也以100kg/hr的速率加到该加料斗中。液化马来酐以1.95kg/hr的速率通过注射阀(约L/D=7)加到反应器。L/D是用于限定沿挤出机筒的距离的术语,相当于挤出机长度与挤出机筒直径之比。LUPERSOLR130以80g/hr的速率通过注射阀(约L/D=17)加料。LUPERSOLR130作为50wt%ISOPARV矿物油溶液加料。4-(3-氨丙基)吗啉以3.9kg/hr的速率加到第二反应器区(约L/D=46)。借助于沿挤出机的放空区排出接枝步骤和胺化步骤的付产物。机筒内的温度维持在240-295℃。

取出颗粒产物(MFVM-A)样品,溶于10wt%溶剂130中性基本油料以制备多官能粘度改进剂浓缩物。

实施例Ⅱ

乙烯-丙烯共聚物B由干燥的挤出机以100kg/hr的速率加到挤出机反应器的加料斗中。水也以100g/hr的速率加到加料斗中。液化马来酐以1.65kg/hr的速率通过注射阀(约L/D=7)加到反应器中。LUPERSOLR130以125g/hr的速率通过注射阀(约L/D=17)加料。LUPEROLR130作为50wt%ISOPARRV矿物油溶液加 料。4-(3-氨丙基)吗啉以3.8kg/hr的速率加到第二反应器区(约L/D=46)。借助于沿挤出机的放空区排出接枝步骤和胺化步骤的付产物。机筒内的温度维持在295-305℃。

取出颗粒产物(MFVM-B)样品,溶于10wt%溶剂130中性基本油料,以制备多官能粘度改进剂浓缩物。

采用MFVM-A和MFVM-B浓缩物制备10W40和润滑油配方。另外,采用MFVM-A和MFVM-B浓缩物的混合物(如90wt%MFVM-A/10wt.%MFVM-B,80wt.%MFVM-A/20wt%MFVM-B,等等)制备配方。

经配制的油含有9%实验洗涤抑制剂包装,包括:常用的市售分散剂、洗涤抑制剂、抗氧化剂、抗磨剂和稀释剂;市售溶剂中性140和130基本油料(分别约75.4wt%和约4.5%)和ECA-11039润滑油流动改进剂(0.4wt%)。ECA-11039是市售品,由Exxon化学公司生产。经配制的油的基本油料比和运动粘度保持恒定。

图1和图2中的数据示出了含有不同用量的MFVM-A和MFVM-B的10W40润滑油特性。

图1示出了冷曲轴模拟器试验(CCS  ASTM试验方法D-2602)-一种低温(-20℃)润滑油动力学粘度的测定方法-的结果。这些结果表明优选使用MFVM-B的低CCS值(相对于MFVM-A)。

图2示出需要低含量的MFVM-B(相对于MFVM-A)以使 润滑油增粘到于100℃12.5-16.3CST的10W40运动粘度范围。

根据图1和2报道的结果,优选含全部MFVM-B的润滑油。

但图3示出了MFVM-A、MFVM-B及其混合物在使用ES-SO基本油料的10W40油中的粘性性能。这些数据表明单独使用MFVM-B会破坏倾点,而单独使用MFVM侧不然。图3还示出了使用小型旋转粘度仪(MPV-TP1)的缓慢冷却的动力学粘度的结果。在该试验中,配制的油样通过标准循环缓慢冷却,并于低温(如-25℃)进行测试(ASTM方法D-4684TP-1冷却型)。

在该试验中,单独使用MFVM-A不合格,而单独使用MFVM-B合格)。

所以,采用这些测试项目,单独使用MFVM-A或MFVM-B都不能满足所需性能标准。图3还示出了在各种其它10W40配制的油中MFVM-A和MFVM-B的平均粘度行为。

这些数据证实,单独使用MFVM-A或MFVM-B都不能满足所有市售基本油料中的性能指标。

令人惊奇地发现,通过混合MFVM-A和MFVM-B,如图3数据所示,可满足倾点指标和MRV  TP-1指标。

此外,在混合物中使用MFVM-B除了其自身用途之外还使人们利用低MFVM含量额度的优点和上述CCS的优点。

例如,图3所示的60wt%/40wt%MFVM-B/MFVM-A会通过倾点和MRV-TP-1及显示出CCS和总的MFVM含量的优 点。

实施例Ⅲ

先制备45/55wt%共聚物A和共聚物B的混合物,然后以实施例Ⅰ和Ⅱ中共聚物A和B基本上相同的方式在挤出机反应器中进行官能化和衍生。将颗粒产物样品以相当于9.8wt%的量溶于Exxon溶剂100中性基本油料中以制备多官能粘度改进剂浓缩物。也制备3wt%硼酸化的分子量为950的聚异丁烯琥珀酰亚胺分散剂ECA-5025的第二种浓缩物。ECA-5025是Exxon化学公司生产的市售产物。对80℃贮存的两种浓缩物样品的100℃运动粘度进行粘度,测定是在开始、1周后、两周后以及每两周之后进行的,总共进行8周。

如表1所示,仅含多官能粘度改进剂的浓缩物(基本情况),其粘度基本上提高了。含多官能粘度改进剂加3wt%分散剂的样品,其粘度比基本情况的实质上降低了。

本文发布于:2024-09-25 07:18:52,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/4/71246.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议