一种基于机器视觉的铆钉尺寸检测方法与流程



1.本发明属于铆钉检测技术领域,具体为一种基于机器视觉的铆钉尺寸检测方法。


背景技术:



2.铆钉是用于连接两个带通孔,一端有帽的零件(或构件)的钉形物件。在铆接中,利用自身形变或过盈连接被铆接的零件。铆钉种类很多,而且不拘形式。铆钉在生产过程中,需要对尺寸进行检测。
3.但是常见的检测方法使得使用时,不能对铆钉的缺陷进行检测,从而影响了产品的良品率。


技术实现要素:



4.本发明的目的在于:为了解决上述提出的问题,提供一种基于机器视觉的铆钉尺寸检测方法。
5.本发明采用的技术方案如下:一种基于机器视觉的铆钉尺寸检测方法,所述基于机器视觉的铆钉尺寸检测方法包括以下步骤:
6.s1:启动模块控制整个系统启动后,整个系统开始工作,铆钉图像采集模块选择型号mv-em200m的面阵ccd相机进行铆钉图像的采集,
7.s2:图像预处理模块先对铆钉图像采集模块拍摄到的图像进行离散傅里叶变换,将操作转换到频率域上进行,然后对图像低通滤波,去除瑕疵等高频信息,转换回原空间中与原图进行差分,从而得到增强后的图像
8.s3:图像预处理模块对图像进行增强处理之后,采用双边滤波的方法进行图像图像滤波,在检测时,如果窗口中存在噪声点,那么它必然为3
×
3滤波窗口中某一行或者某一列的最大值或最小值;
9.s4:图像预处理模块进行滤波处理之后,通过选择适当的阈值将原本具有多个灰度等级的图像转换成仍然能够反映图像整体与局部特征的黑白二值图像,即只要像素的灰度值大于给定阈值的就置为255,小于给定阈值的就置为0,经过这样处理后的图像就会呈现出黑白对比明显的效果;
10.s5:尺寸检测模块进行边缘检测,利用相邻点像素的灰度差,在边缘处取得极值,从而检测到图像边缘信息,删除非边缘部分,从而对噪声起到平滑作用;
11.s6:尺寸标定模块进行尺寸标定,选取几个尺寸标准的铆钉样件作为标定工件,通过影像测量仪测量获得它的钉杆直径尺寸,并计算标定系数k;
12.s7:尺寸检测模块通过阈值分割后变换为二值图像进行轮廓提取,阈值分割法的步骤为:1.确定图像分割的阈值;2.将所确定的分割阈值和图像像素值进行比较以划分像素;
13.s8:尺寸检测模块根据其轮廓图像的特征信息可以测量出铆钉的埋头面夹角、内径、长度、埋头面厚度等物理量;由于埋头面的夹角能够通过拟合所测角度的两条直线方程
进而计算直线夹角得到,铆钉的长度、内径以及埋头面厚度能够通过其对应平行线间的距离获得,因此铆钉尺寸参数的测量转变为对目标直线的检测
14.s9:缺陷检测模块用ccd相机拍摄多幅合格的铆钉图像,采用具有尺度特性原子库的稀疏分解技术,并利用均值聚类技术对多幅铆钉图像的稀疏结果进行聚类处理,获得铆钉背景图像b;对于不同类型的表面缺陷,具有不同的特征,因此对不同的缺陷信息进行特征描述,能够有效的实现对铆钉表面缺陷的准确判断;
15.s10:缺陷检测模块对缺陷进行判断,缺陷检测模块对拍摄到铆钉的圆头面图像进行轮廓提取,由于合格的铆钉圆头面轮廓图像为圆形,因此通过计算铆钉圆头面轮廓图像的圆形度,并设置合适的圆形度阈值,当圆头面轮廓图像的圆形度大于此阈值时,判断为铆钉圆头面无掉角缺陷,否则判断为铆钉圆头面存在掉角缺陷;
16.s11:统计分析模块对尺寸参数的统计分析可以准确地判断出铆钉生产机械设备的工作状态,实现生产线的自诊断功能,统计分析模块通过测量数据均值与设定值的比较可以判断生产工艺过程的偏差大小;铆钉图像采集模块根据测量数据方差的大小可以判断铆钉生产过程的精密程度;图像预处理模块通过判断测量值的偏差的分布规律,可以判断出生产过程中工艺参数的一致性;统计分析方法中,一般使用均值、方差、偏度和峰度对统计数据进行分析。
17.在一优选的实施方式中,所述步骤s1中,所检测的铆钉的最大尺寸不超过10mm
×
10mm,根据铆钉的几何参数和相机的镜头接口,所述铆钉图像采集模块选择型号为aft-zml1024的光学镜头。
18.在一优选的实施方式中,所述步骤s1中,所检测的铆钉的最大尺寸不超过10mm
×
10mm,根据铆钉的几何参数和相机的镜头接口,所述铆钉图像采集模块选择型号为aft-zml1024的光学镜头。
19.在一优选的实施方式中,所述步骤s3中,算法是求出每一行和每一列的最大值和最小值,求出每一行和每一列的最大值和最小值考虑到窗口中的像素点,然后将最大值的均值作为最大阈值,最小值的均值作为最小阈值。
20.在一优选的实施方式中,所述步骤s4中,把灰度值为0的像素点组成的区域判定为属于特定目标物体;灰度值为255表示的像素点组成区域判定为特定目标物体背景或者其他的物体区域。
21.在一优选的实施方式中,所述步骤s5中,尺寸检测模块先对图像进行高斯滤波,然后再进行laplacian边缘检测,边缘检测结果为零的即为边缘点的位置。
22.在一优选的实施方式中,所述步骤s7中,为了对铆钉的待测参数进行计算,需要对铆钉图像进行轮廓提取,以获取铆钉图像的边缘轮廓信息。
23.在一优选的实施方式中,所述步骤s8中,还需要对不同特征的阈值分割部分,在每种特征的圆点内部和圆点外部都需要进行不同的开闭操作、填充操作。
24.在一优选的实施方式中,所述步骤s9中,在待测铆钉图像经过图像背景补偿后,能够获得铆钉的缺陷图像。
25.在一优选的实施方式中,所述步骤s9中,通过计算铆钉缺陷图像的位置、区域面积、轮廓周长几何特征和矩形度、长宽比、圆形度形状特征。
26.在一优选的实施方式中,所述步骤s10中,对于麻坑缺陷通过计算缺陷图像的长宽
比和矩形度,并设置合适的长宽比阈值和矩形度阈值,当缺陷图像的矩形度和长宽比满足相应的条件时,判断缺陷图像为麻坑缺陷。
27.综上所述,由于采用了上述技术方案,本发明的有益效果是:
28.本发明中,尺寸检测模块和缺陷检测模块配合使用,根据轮廓图像中所具有的的直线型特征,使用hough变换的方法实现铆钉尺寸参数的测量;使用图像的几何特征对铆钉缺陷图像进行特征描述,并根据不同缺陷图像特征描述的不同对铆钉缺陷进行准确判断。对铆钉尺寸测量和缺陷检测的数据通过统计分析,实现铆钉生产线的自诊断功能,从而提高了该系统的准确性和高效性,同时配合统计分析模块可以对缺陷进行统计,进而使得后续的使用过程中,可以提供了参考价值,增加了使用时的便利性,同时也提高了该检测方法的检测效率,提高了产品的良品率。
附图说明
29.图1为本发明的流程图。
30.图中标记:1-启动模块、2-铆钉图像采集模块、3-图像预处理模块、4-尺寸标定模块、5-尺寸检测模块、6-缺陷检测模块、7-统计分析模块。
具体实施方式
31.为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
32.参照图1,
33.一种基于机器视觉的铆钉尺寸检测方法,基于机器视觉的铆钉尺寸检测方法包括以下步骤:
34.s1:启动模块1控制整个系统启动后,整个系统开始工作,铆钉图像采集模块2选择型号mv-em200m的面阵ccd相机进行铆钉图像的采集,
35.s2:图像预处理模块3先对铆钉图像采集模块2拍摄到的图像进行离散傅里叶变换,将操作转换到频率域上进行,然后对图像低通滤波,去除瑕疵等高频信息,转换回原空间中与原图进行差分,从而得到增强后的图像
36.s3:图像预处理模块3对图像进行增强处理之后,采用双边滤波的方法进行图像图像滤波,在检测时,如果窗口中存在噪声点,那么它必然为3
×
3滤波窗口中某一行或者某一列的最大值或最小值;
37.s4:图像预处理模块3进行滤波处理之后,通过选择适当的阈值将原本具有多个灰度等级的图像转换成仍然能够反映图像整体与局部特征的黑白二值图像,即只要像素的灰度值大于给定阈值的就置为255,小于给定阈值的就置为0,经过这样处理后的图像就会呈现出黑白对比明显的效果;
38.s5:9进行边缘检测,利用相邻点像素的灰度差,在边缘处取得极值,从而检测到图像边缘信息,删除非边缘部分,从而对噪声起到平滑作用;
39.s6:尺寸标定模块4进行尺寸标定,选取几个尺寸标准的铆钉样件作为标定工件,通过影像测量仪测量获得它的钉杆直径尺寸,并计算标定系数k;
40.s7:尺寸检测模块5通过阈值分割后变换为二值图像进行轮廓提取,阈值分割法的步骤为:1.确定图像分割的阈值;2.将所确定的分割阈值和图像像素值进行比较以划分像素;
41.s8:尺寸检测模块5根据其轮廓图像的特征信息可以测量出铆钉的埋头面夹角、内径、长度、埋头面厚度等物理量;由于埋头面的夹角能够通过拟合所测角度的两条直线方程进而计算直线夹角得到,铆钉的长度、内径以及埋头面厚度能够通过其对应平行线间的距离获得,因此铆钉尺寸参数的测量转变为对目标直线的检测
42.s9:缺陷检测模块6用ccd相机拍摄多幅合格的铆钉图像,采用具有尺度特性原子库的稀疏分解技术,并利用均值聚类技术对多幅铆钉图像的稀疏结果进行聚类处理,获得铆钉背景图像b;对于不同类型的表面缺陷,具有不同的特征,因此对不同的缺陷信息进行特征描述,能够有效的实现对铆钉表面缺陷的准确判断;
43.s10:缺陷检测模块6对缺陷进行判断,缺陷检测模块6对拍摄到铆钉的圆头面图像进行轮廓提取,由于合格的铆钉圆头面轮廓图像为圆形,因此通过计算铆钉圆头面轮廓图像的圆形度,并设置合适的圆形度阈值,当圆头面轮廓图像的圆形度大于此阈值时,判断为铆钉圆头面无掉角缺陷,否则判断为铆钉圆头面存在掉角缺陷;
44.s11:统计分析模块7对尺寸参数的统计分析可以准确地判断出铆钉生产机械设备的工作状态,实现生产线的自诊断功能,统计分析模块7通过测量数据均值与设定值的比较可以判断生产工艺过程的偏差大小;铆钉图像采集模块2根据测量数据方差的大小可以判断铆钉生产过程的精密程度;图像预处理模块3通过判断测量值的偏差的分布规律,可以判断出生产过程中工艺参数的一致性;统计分析方法中,一般使用均值、方差、偏度和峰度对统计数据进行分析。
45.步骤s1中,所检测的铆钉的最大尺寸不超过10mm
×
10mm,根据铆钉的几何参数和相机的镜头接口,铆钉图像采集模块2选择型号为aft-zml1024的光学镜头。
46.步骤s3中,算法是求出每一行和每一列的最大值和最小值,求出每一行和每一列的最大值和最小值是能尽可能多得考虑到窗口中的像素点,避免将极值点作为阈值,因而起不到检测作用。然后将最大值的均值作为最大阈值,最小值的均值作为最小阈值。
47.步骤s4中,把灰度值为0的像素点组成的区域判定为属于特定目标物体;灰度值为255表示的像素点组成区域判定为特定目标物体背景或者其他的物体区域。当然,也可以将灰度为255的像素点区域判定为特定目标物体,灰度为0的像素点区域判定为背景或者其他的物体区域。如果某个物体内部的像素灰度值差距不大,并且处于一个与其不同大小灰度值的相同背景下,我们就可以通过阈值法得到比较理想的分割效果。
48.步骤s5中,9先对图像进行高斯滤波,然后再进行laplacian边缘检测,边缘检测结果为零的即为边缘点的位置。
49.步骤s7中,为了对铆钉的待测参数进行计算,需要对铆钉图像进行轮廓提取,以获取铆钉图像的边缘轮廓信息。通过对铆钉图像进行轮廓提取,能够极大程度上剔除不相关的图像信息,大大减少图像处理的数据量。
50.步骤s8中,还需要对不同特征的阈值分割部分,在每种特征的圆点内部和圆点外部都需要进行不同的开闭操作、填充操作。
51.步骤s9中,在待测铆钉图像经过图像背景补偿后,能够获得铆钉的缺陷图像,为了
将不同类型的缺陷进行分类,需要对不同类型的缺陷进行识别处理。
52.步骤s9中,通过计算铆钉缺陷图像的位置、区域面积、轮廓周长等几何特征和矩形度、长宽比、圆形度等形状特征,全面准确的描述铆钉的每一种缺陷类型,并根据描述结果的差异采用二叉树分类的方法实现铆钉表面缺陷的分类,
53.步骤s10中,对于麻坑缺陷通过计算缺陷图像的长宽比和矩形度,并设置合适的长宽比阈值和矩形度阈值,当缺陷图像的矩形度和长宽比满足相应的条件时,判断缺陷图像为麻坑缺陷,因此能够将麻坑缺陷和划痕、刀纹等细长型缺陷区分开来。
54.尺寸检测模块5和缺陷检测模块6配合使用,根据轮廓图像中所具有的的直线型特征,使用hough变换的方法实现铆钉尺寸参数的测量;使用图像的几何特征对铆钉缺陷图像进行特征描述,并根据不同缺陷图像特征描述的不同对铆钉缺陷进行准确判断。对铆钉尺寸测量和缺陷检测的数据通过统计分析,实现铆钉生产线的自诊断功能,从而提高了该系统的准确性和高效性,同时配合统计分析模块7可以对缺陷进行统计,进而使得后续的使用过程中,可以提供了参考价值,增加了使用时的便利性,同时也提高了该检测方法的检测效率。
55.需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个
……”
限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
56.以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

技术特征:


1.一种基于机器视觉的铆钉尺寸检测方法,其特征在于:所述基于机器视觉的铆钉尺寸检测方法包括以下步骤:s1:启动模块(1)控制整个系统启动后,整个系统开始工作,铆钉图像采集模块(2)选择型号mv-em200m的面阵ccd相机进行铆钉图像的采集,s2:图像预处理模块(3)先对铆钉图像采集模块(2)拍摄到的图像进行离散傅里叶变换,将操作转换到频率域上进行,然后对图像低通滤波,去除瑕疵高频信息,转换回原空间中与原图进行差分,从而得到增强后的图像s3:图像预处理模块(3)对图像进行增强处理之后,采用双边滤波的方法进行图像图像滤波,在检测时,如果窗口中存在噪声点,那么它必然为3
×
3滤波窗口中某一行或者某一列的最大值或最小值;s4:图像预处理模块(3)进行滤波处理之后,通过选择适当的阈值将原本具有多个灰度级的图像转换成仍然能够反映图像整体与局部特征的黑白二值图像,即只要像素的灰度值大于给定阈值的就置为255,小于给定阈值的就置为0,经过这样处理后的图像就会呈现出黑白对比明显的效果;s5:尺寸检测模块(5)进行边缘检测,利用相邻点像素的灰度差,在边缘处取得极值,从而检测到图像边缘信息,删除非边缘部分,从而对噪声起到平滑作用;s6:尺寸标定模块(4)进行尺寸标定,选取几个尺寸标准的铆钉样件作为标定工件,通过影像测量仪测量获得它的钉杆直径尺寸,并计算标定系数k;s7:尺寸检测模块(5)通过阈值分割后变换为二值图像进行轮廓提取,阈值分割法的步骤为:1.确定图像分割的阈值;2.将所确定的分割阈值和图像像素值进行比较以划分像素;s8:尺寸检测模块(5)根据其轮廓图像的特征信息测量出铆钉的埋头面夹角、内径、长度、埋头面厚度物理量;由于埋头面的夹角能够通过拟合所测角度的两条直线方程进而计算直线夹角得到,铆钉的长度、内径以及埋头面厚度能够通过其对应平行线间的距离获得,因此铆钉尺寸参数的测量转变为对目标直线的检测s9:缺陷检测模块(6)用ccd相机拍摄多幅合格的铆钉图像,采用具有尺度特性原子库的稀疏分解技术,并利用均值聚类技术对多幅铆钉图像的稀疏结果进行聚类处理,获得铆钉背景图像b;对于不同类型的表面缺陷,具有不同的特征,因此对不同的缺陷信息进行特征描述,能够有效的实现对铆钉表面缺陷的准确判断;s10:缺陷检测模块(6)对缺陷进行判断,缺陷检测模块(6)对拍摄到铆钉的圆头面图像进行轮廓提取,由于合格的铆钉圆头面轮廓图像为圆形,因此通过计算铆钉圆头面轮廓图像的圆形度,并设置合适的圆形度阈值,当圆头面轮廓图像的圆形度大于此阈值时,判断为铆钉圆头面无掉角缺陷,否则判断为铆钉圆头面存在掉角缺陷;s11:统计分析模块(7)对尺寸参数的统计分析准确地判断出铆钉生产机械设备的工作状态,实现生产线的自诊断功能,统计分析模块(7)通过测量数据均值与设定值的比较判断生产工艺过程的偏差大小;铆钉图像采集模块(2)根据测量数据方差的大小判断铆钉生产过程的精密程度;图像预处理模块(3)通过判断测量值的偏差的分布规律,判断出生产过程中工艺参数的一致性;统计分析方法中,一般使用均值、方差、偏度和峰度对统计数据进行分析。2.如权利要求1所述的一种基于机器视觉的铆钉尺寸检测方法,其特征在于:所述步骤
s1中,所检测的铆钉的最大尺寸不超过10mm
×
10mm,根据铆钉的几何参数和相机的镜头接口,所述铆钉图像采集模块(2)选择型号为aft-zml1024的光学镜头。3.如权利要求1所述的一种基于机器视觉的铆钉尺寸检测方法,其特征在于:所述步骤s3中,算法是求出每一行和每一列的最大值和最小值,求出每一行和每一列的最大值和最小值考虑到窗口中的像素点,然后将最大值的均值作为最大阈值,最小值的均值作为最小阈值。4.如权利要求1所述的一种基于机器视觉的铆钉尺寸检测方法,其特征在于:所述步骤s4中,把灰度值为0的像素点组成的区域判定为属于特定目标物体;灰度值为255表示的像素点组成区域判定为特定目标物体背景或者其他的物体区域。5.如权利要求1所述的一种基于机器视觉的铆钉尺寸检测方法,其特征在于:所述步骤s5中,尺寸检测模块(5)先对图像进行高斯滤波,然后再进行laplacian边缘检测,边缘检测结果为零的即为边缘点的位置。6.如权利要求1所述的一种基于机器视觉的铆钉尺寸检测方法,其特征在于:所述步骤s7中,为了对铆钉的待测参数进行计算,需要对铆钉图像进行轮廓提取,以获取铆钉图像的边缘轮廓信息。7.如权利要求1所述的一种基于机器视觉的铆钉尺寸检测方法,其特征在于:所述步骤s8中,还需要对不同特征的阈值分割部分,在每种特征的圆点内部和圆点外部都需要进行不同的开闭操作、填充操作。8.如权利要求1所述的一种基于机器视觉的铆钉尺寸检测方法,其特征在于:所述步骤s9中,在待测铆钉图像经过图像背景补偿后,能够获得铆钉的缺陷图像。9.如权利要求1所述的一种基于机器视觉的铆钉尺寸检测方法,其特征在于:所述步骤s9中,通过计算铆钉缺陷图像的位置、区域面积、轮廓周长几何特征和矩形度、长宽比、圆形度形状特征。10.如权利要求1所述的一种基于机器视觉的铆钉尺寸检测方法,其特征在于:所述步骤s10中,对于麻坑缺陷通过计算缺陷图像的长宽比和矩形度,并设置合适的长宽比阈值和矩形度阈值,当缺陷图像的矩形度和长宽比满足相应的条件时,判断缺陷图像为麻坑缺陷。

技术总结


本发明公开了一种基于机器视觉的铆钉尺寸检测方法。本发明中,尺寸检测模块和缺陷检测模块配合使用,根据轮廓图像中所具有的的直线型特征,使用Hough变换的方法实现铆钉尺寸参数的测量;使用图像的几何特征对铆钉缺陷图像进行特征描述,并根据不同缺陷图像特征描述的不同对铆钉缺陷进行准确判断。对铆钉尺寸测量和缺陷检测的数据通过统计分析,实现铆钉生产线的自诊断功能,从而提高了该系统的准确性和高效性,同时配合统计分析模块可以对缺陷进行统计,进而使得后续的使用过程中,可以提供了参考价值,增加了使用时的便利性,同时也提高了该检测方法的检测效率,提高了产品的良品率。率。率。


技术研发人员:

缪建国 李立军 陆海斌 徐磊

受保护的技术使用者:

无锡安欣达科技有限公司

技术研发日:

2022.10.11

技术公布日:

2022/12/30

本文发布于:2024-09-20 17:57:21,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/4/50368.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:铆钉   图像   阈值   缺陷
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议