陶瓷半导体封装密封环的制作方法


陶瓷半导体封装密封环


背景技术:



1.半导体芯片通常被容纳在保护芯片免受有害环境影响(诸如热、湿气和碎屑)的封装件内。封装的芯片通常经由暴露于封装件的表面的导电构件(例如引线)与封装件外部的电子器件进行通信。一些封装件包括衬底,半导体管芯被定位在该衬底上。衬底可以包括多个金属层或迹线,这些金属层或迹线承载电信号或功率。


技术实现要素:



2.在一些示例中,一种半导体封装件包括陶瓷衬底以及由陶瓷衬底覆盖的第一金属层和第二金属层。第一金属层被配置为承载至少在20ghz至28ghz频率范围内的信号。该封装件包括位于第一金属层和第二金属层上方并耦合到第一金属层的半导体管芯。该封装件包括位于半导体管芯和第一金属层之间的水平面中的接地屏蔽件,该接地屏蔽件包括在第一金属层的一部分上方的孔口。该封装件包括耦合到陶瓷衬底的顶表面的金属密封环,该金属密封环具有与接地屏蔽件的区段竖直对齐的区段。接地屏蔽件的该区段位于接地屏蔽件的孔口和接地屏蔽件的水平中心之间。该封装件包括耦合到金属密封环的顶表面的金属盖。
3.在一些示例中,一种方法包括形成陶瓷衬底,该陶瓷衬底包括:腔体;位于腔体的底板下方的第一金属层,第一金属层被配置为传导频率范围为2ghz至38ghz的信号;以及位于第一金属层和腔体的底板之间的接地屏蔽件,该接地屏蔽件具有邻接空白空间的凹陷区域,该空白空间位于与接地屏蔽件相同的水平面中。该方法包括将半导体管芯的器件侧面耦合到延伸穿过腔体的底板的导电端子,在环绕半导体管芯的水平面内存在1毫米至3毫米之间的间隙。该方法包括在陶瓷衬底的顶表面上镀覆金属层。该方法包括在金属层上形成金属密封环,该密封环与接地屏蔽件竖直对齐,而不与空白空间竖直对齐。
附图说明
4.图1a是根据各种示例的具有密封环的陶瓷半导体封装件的透视图。
5.图1b是根据各种示例的具有密封环的陶瓷半导体封装件的俯视图。
6.图1c是根据各种示例的具有密封环的陶瓷半导体封装件的侧视图。
7.图1d和图1e是根据各种示例的接地屏蔽件的俯视图。
8.图2a是根据各种示例的具有密封环的陶瓷半导体封装件的透视图。
9.图2b是根据各种示例的具有密封环的陶瓷半导体封装件的俯视图。
10.图2c和图2d是根据各种示例的具有密封环的陶瓷半导体封装件的侧视图。
11.图3a是根据各种示例的具有位于密封环上的金属盖的陶瓷半导体封装件的透视图。
12.图3b是根据各种示例的具有位于密封环上的金属盖的陶瓷半导体封装件的俯视图。
13.图3c和图3d是根据各种示例的具有位于密封环上的金属盖的陶瓷半导体封装件
的侧视图。
14.图4是根据各种示例描绘在常规陶瓷半导体封装件和具有密封环的陶瓷半导体封装件中的插入损耗的曲线图。
15.图5是根据各种示例描绘在常规陶瓷半导体封装件和具有密封环的陶瓷半导体封装件中的回波损耗的曲线图。
16.图6a-图6i是根据各种示例的用于制造具有密封环的陶瓷半导体封装件的工艺流程的透视图、俯视图和俯视横截面图。
17.图7是根据各种示例的用于制造具有密封环的陶瓷半导体封装件的方法的流程图。
具体实施方式
18.陶瓷半导体封装件是包含覆盖多个金属层的陶瓷衬底的气密密封封装件。这种封装件中的陶瓷衬底可以包括在封装件的顶部处的腔体,并且半导体管芯可以位于该腔体的底板上。陶瓷衬底的金属层可以通过金属通孔的网络彼此耦合并与半导体管芯耦合。一个或多个金属层可包括被配置为承载高频信号(诸如在5ghz至40ghz范围内)的迹线。接地屏蔽件可以位于半导体管芯和高频信号迹线之间,以提供高频信号迹线的返回路径。然而,在许多情况下,接地屏蔽件可能包括与空白空间邻接的孔口或凹陷区域,以减少寄生电容。该孔口或空白空间可称为接地切口。孔口或凹陷区域将高频信号迹线暴露于其他金属结构,更具体地,暴露于与金属盖结合使用以气密地密封半导体管芯腔体的密封环。因此,高频信号迹线和密封环之间会发生电磁耦合,从而导致干扰和性能的衰减。
19.本公开描述了半导体封装件的各种示例,其中密封环与接地屏蔽件竖直对齐,而不与接地屏蔽件孔口或邻接于接地屏蔽件的凹陷区域的空白空间竖直对齐。更具体地,示例半导体封装件包括陶瓷衬底以及由陶瓷衬底覆盖的第一金属层和第二金属层。第一金属层被配置为承载至少在2ghz至38ghz频率范围内的信号。该封装件包括位于第一金属层和第二金属层上方并耦合到第一金属层的半导体管芯。该封装件包括位于半导体管芯和第一金属层之间的水平面中的接地屏蔽件。接地屏蔽件包括位于第一金属层的一部分上方的孔口。该封装件包括耦合到陶瓷衬底的顶表面的密封环。密封环具有与接地屏蔽件的区段竖直对齐的区段。接地屏蔽件的该区段位于接地屏蔽件的孔口和接地屏蔽件的水平中心之间。该封装件包括耦合到密封环的顶表面的金属盖。由于缺乏密封环和接地屏蔽件孔口之间的竖直对齐,或高频信号迹线暴露穿过的空白空间,上述电磁耦合和干扰挑战得到缓解,从而保持半导体封装件的功能完整性。本文描述的封装件在各种高速应用中是有用的,诸如射频放大器和射频合成器。
20.图1a是根据各种示例的具有密封环的陶瓷半导体封装件100的半透明透视图。封装件100包括陶瓷衬底102和一组金属层104。这些金属层从上到下包括金属层108、110、112、114、116和118。为了简单和清晰起见,图1a省略了该组金属层104中的至少一些金属层的一些部分。例如,金属层118可暴露于封装件100的底表面。在一些示例中,该组金属层104中的各种金属层具有不同的配置,这取决于为其设计封装件100的特定应用。接地屏蔽件106位于该组金属层104中的最顶层金属层的上方,在一些示例中,该最顶层金属层是金属层108。接地屏蔽件106为高频信号迹线(诸如下文所述的高频信号迹线122)提供返回路径。
通孔120将该组金属层104中的不同金属层耦合到该组金属层104中的其他金属层。一些通孔120可以将该组金属层104中的不同金属层耦合到半导体管芯(图1a中未明确示出)。该组金属层104中的一个金属层(诸如最顶层的金属层108)包括金属高频信号迹线122。在一些示例中,信号迹线122被配置为承载具有高频(例如,2ghz至38ghz,或在20ghz至28ghz的范围内,或在包括至少20ghz至28ghz的子范围的范围内,这些范围的意义在下文中解释)的信号。封装件100还包括金属触点124,这些金属触点124耦合到该组金属层104中的一个或多个金属层。金属触点124暴露于封装件100的外部,以促进一个或多个金属层与其他部件和器件的电耦合,诸如封装件100耦合到的印刷电路板(pcb)上的信号迹线和电子器件。
21.封装件100包括金属密封环126。在一些示例中,金属密封环126由铁镍钴合金组成,但也可使用其他金属和合金。在一些示例中,金属密封环126被镀覆以保护金属密封环126,例如,使用合适的镀覆合金(诸如镍-金)。在一些示例中,金属密封环126具有多个构件,这些构件被耦合以形成多边形形状。例如,金属密封环126可以具有矩形形状。在一些示例中,金属密封环126具有沙漏形状,这意味着金属密封环126的两个构件彼此相对且彼此大致平行,并且金属密封环126的两个构件彼此相对且朝向封装件100的水平中心弯曲,如图所示。在一些示例中,金属密封环126的朝向封装件100的水平中心弯曲的构件可以具有彼此平行的部分。在一些示例中,金属密封环126具有圆角(rounded corner),并且在其他示例中,金属密封环126具有非圆角或圆角与非圆角的组合。预想到金属密封环126的其他形状,诸如圆形或卵形形状。在一些示例中,金属密封环126具有在50微米至500微米之间的竖直厚度,超过该范围的厚度是不利的,因为成本会增加且封装轮廓更高,这是不可取的,而且低于该范围的厚度是不利的,因为它们损害了气密性能。在一些示例中,金属密封环126具有在250微米至500微米之间的水平宽度,高于该范围的宽度是不利的,因为成本会增加且可容纳的最大管芯尺寸减小,而且低于该范围的宽度是不利的,因为气密性能会受损。在一些示例中,金属密封环126位于金属(例如,镀覆)层129上,该金属(例如,镀覆)层129被镀覆在陶瓷衬底102的顶表面上。在一些示例中,金属层129具有与金属密封环126相同或相似的形状。在一些示例中,金属层129在水平方向上比金属密封环126宽。在一些示例中,金属层129具有在0.5毫米至2毫米之间的水平宽度,大于此范围的宽度是不利的,因为不可接受地增加了成本,而且小于此范围的宽度是不利的,因为存在制造中的重大困难。
22.如图所示,接地屏蔽件106包括导致在接地屏蔽件106的水平面中形成空白空间128的凹陷区域127。尽管本文中使用了术语“空白空间”,但其意在表示接地屏蔽件106的凹陷性质,并且在一些示例中,空白空间128可以是空的,而在其他示例中,空白空间128可以用电介质或其他合适的材料填充。不管在空白空间中是否存在这种材料,为了简单和一致起见,仍然使用术语“空白空间”。金属密封环126与每个空白空间128水平分开至少0.45毫米。空白空间128将信号迹线122暴露于空白空间128正上方的空间(例如,与空白空间128竖直对齐)。尽管有这种暴露,但信号迹线122上承载的高频信号不会与金属密封环126电磁耦合,因此不会干扰金属密封环126。这是因为金属密封环126的形状和尺寸被设计成金属密封环126与接地屏蔽件106竖直对齐但不与空白空间128竖直对齐。换句话说,金属密封环126具有与接地屏蔽件106的区段竖直对齐的区段,其中接地屏蔽件106的该区段位于接地屏蔽件106的空白空间128和接地屏蔽件106的水平中心之间。在一些示例中,空白空间128和金属密封环126之间的最小水平距离为0.45毫米,其中较小的距离是不利的,因为它使金
属密封环126和信号迹线122不可接受地容易受到电磁耦合和干扰。在一些示例中,信号迹线122和金属密封环126之间的最小竖直距离为0.75毫米,其中较小的距离是不利的,因为它使金属密封环126和信号迹线122不可接受地容易受到电磁耦合和干扰。
23.图1b是根据各种示例的陶瓷半导体封装件100的俯视图。图1c是根据各种示例的陶瓷半导体封装件100的侧视图。
24.在操作中,耦合到竖直延伸穿过接地屏蔽件106的中心的通孔120的半导体管芯(图1a-图1c中未明确示出)在高频信号迹线122上发射和接收高频信号。信号迹线122和金属密封环126之间的意外电磁耦合的可能性通过金属密封环126的任何部分都没有与信号迹线122所穿过暴露的空白空间128竖直对齐的事实来减轻。相反,金属密封环126与接地屏蔽件106竖直对齐。通过上述空白空间128和金属密封环126之间的最小水平距离,并且通过上述信号迹线122和金属密封环126之间的最小竖直距离,进一步减轻了上述意外电磁耦合的可能性。
25.图1d和图1e是根据各种示例的接地屏蔽件106的俯视图。图1d和图1e提供了接地屏蔽件106的形状的清晰无障碍视图。图1d中的示例接地屏蔽件106包括凹陷区域127和由凹陷区域127形成的空白空间128。在其他示例中,诸如在图1e中,可以在接地屏蔽件106中形成孔口130来代替空白空间128。在这样的示例中,上面参考空白空间128所提供的描述也适用于孔口130。金属密封环126被定位成水平远离每个孔口130至少0.25毫米。尽管图1d中仅示出了两个空白空间128,但可以包括任意数量的空白空间128,并且可以相应地调整金属密封环126的形状,使得金属密封环126不与任何空白空间128竖直对齐。类似地,尽管图1e中仅示出了两个孔口130,但可以包括任意数量的孔口,并且可以相应地调整金属密封环126的形状,使得金属密封环126不与任何孔口130竖直对齐。
26.图2a是根据各种示例的具有密封环的陶瓷半导体封装件100的透视图。图2a中所示的视图与图1a中的视图类似,只是封装件100不再被描绘为是半透明的。如图所示,封装件100包括腔体200,半导体管芯132定位于腔体200内。例如,半导体管芯132可以位于腔体200的底板上,其中半导体管芯132的器件侧面上的导电端子耦合到延伸穿过接地屏蔽件106(图1a)和腔体200的底板的通孔120。半导体管芯132的器件侧面是在其上和/或在其中形成电路的半导体管芯132的表面。在一些示例中,腔体200的形状与金属密封环126的形状匹配。例如,金属密封环126和腔体200都可以具有沙漏形状,或者金属密封环126和腔体200都可以具有矩形形状,或者金属密封环126和腔体200都可以具有圆形形状。在一些示例中,金属密封环126和腔体200具有不同的形状。不管金属密封环126和腔体200的形状如何,金属密封环126都环绕腔体200,使得整个腔体200在水平方向上位于金属密封环126的边界内。图2b是根据各种示例的封装件100的俯视图。图2c和图2d是根据各种示例的封装件100的侧视图。
27.图3a是根据各种示例的具有位于密封环126上并耦合到密封环126的金属盖300的封装件100的透视图。图3b是根据各种示例的图3a的结构的俯视图。图3c和图3d是根据各种示例的图3a的结构的侧视图。如下所述,在应用金属盖300期间,封装件100是气密密封的。
28.图4是根据各种示例的描绘在常规陶瓷半导体封装件和具有密封环的陶瓷半导体封装件中的插入损耗的曲线图400,如上文参考图1a-图3d所述的示例。在本公开的上下文中,插入损耗是由半导体管芯132(例如,图2a)发送并沿高频信号迹线122传播的高频信号
所经历的传输损耗。插入损耗还可以包括由封装件100外部的另一器件发送并沿着信号迹线122朝向半导体管芯132传播的信号所经历的传输损耗。插入损耗是指由于在传输线中插入器件而导致的信号功率的损耗。回波损耗是相对于由传输线中的不连续体所反射的信号功率而言的度量。希望具有低插入损耗和高回波损耗。在图4中,x轴以ghz为单位表示频率,并且y轴以分贝(db)为单位表示插入损耗。曲线404描绘了与常规陶瓷半导体封装相关联(更具体地说,沿着暴露于密封环且与密封环电磁耦合的高频信号迹线)的插入损耗。相比之下,曲线402描绘了与本文所述的封装件100相关联(更具体地说,沿着高频信号迹线122)的插入损耗,如上文所述,高频信号迹线122未暴露于金属密封环126。如曲线图400所示,曲线404的在2ghz至38ghz频率范围内的插入损耗始终大于曲线402的在2ghz至38ghz频率范围内的插入损耗。在该范围之外,曲线402没有清楚地展示出优于曲线404的插入损耗。曲线404(如数字406所示)在20ghz至28ghz范围内的插入损耗特别明显,而曲线402在相同的20ghz至28ghz范围内的插入损耗显著较小。
29.图5是根据各种示例描绘在常规陶瓷半导体封装件和封装件100中的回波损耗的曲线图500。x轴以ghz为单位表示频率,并且y轴以db为单位表示回波损耗。曲线502表示常规陶瓷半导体封装件的回波损耗,并且曲线504表示封装件100的回波损耗。如图所示,在2ghz至38ghz的范围内,曲线504表示相对于曲线502的优越回波损耗性能。
30.图6a-图6i是根据各种示例的用于制造具有密封环的陶瓷半导体封装件的工艺流程的透视图、俯视图和俯视横截面图。图7是根据各种示例的用于制造具有密封环的陶瓷半导体封装件的方法700的流程图。因此,现在并行描述图6a-图6i的工艺流程和方法700。
31.方法700开始于形成相互耦合(例如预切单(pre-singulation))的多个陶瓷衬底(702)。陶瓷衬底的形成是一个迭代过程,其中每次迭代包括将原始陶瓷材料(例如粉末)浇铸到胶带片上,将陶瓷材料切割成面板,形成面板框架,在面板中冲压通孔,用合适的金属或合金填充通孔,执行丝网印刷以形成金属层,以及层压由该迭代产生的结构。方法700包括切单多个陶瓷衬底以产生个体陶瓷衬底(704),在适当温度下共烘烤(co-firing)陶瓷衬底(706),以及钎焊和镀覆陶瓷衬底的暴露的金属(例如,金属触点124)(708)。
32.方法700包括使用倒装芯片配置将半导体管芯定位在陶瓷衬底的腔体中,使得半导体管芯的器件侧面被耦合到腔体的底板(710)。图6a是通过执行步骤710所产生的结构的透视图;图6b是通过执行步骤710所产生的结构的俯视图;并且图6c是通过执行步骤710所产生的结构的俯视横截面图。
33.方法700包括分配和固化半导体管芯底部填料(712)以及分配和镀覆金属密封环(714)。图6d是图6c的结构的透视图,但是添加了半导体管芯底部填料(在该视图中不可见,因为它位于半导体管芯132下方)、陶瓷衬底102的顶表面上的金属层129以及金属层129上的金属密封环126。图6e是图6d的结构的俯视图,并且图6f是图6d的结构的俯视横截面图。在一些示例中,如数字602所示,腔体200和半导体管芯132的尺寸和形状被设计成围绕半导体管芯132的周界提供1毫米-3毫米的间隙。在半导体管芯132和半导体管芯132的所有侧面上的腔体200之间提供1毫米-3毫米的最小距离为底部填料毛细管提供足够的空间,以便用半导体管芯底部填料(例如,经由区域600)进入并填充半导体管芯132的底侧。提供小于1毫米的间隙会导致用于此目的的空间不足,并且提供大于3毫米的间隙会导致不必要的大腔体,从而导致不必要的大封装件100。
34.金属层129的形成可包括在陶瓷衬底102的顶表面上镀覆适当的金属或合金(诸如镍-金)。金属密封环126的形成包括在金属层129的顶表面上分配适当的金属或合金(诸如铁镍钴合金),并且随后用适当的金属或合金(诸如镍-金)镀覆金属密封环126的暴露的表面。
35.方法700包括将金属盖耦合到金属密封环的顶表面(716)。可以使用任何合适的技术将金属盖熔合到金属密封环上,诸如电子束焊接技术。真空可能有助于金属盖的应用,以促进气密密封。图6g是图6f的结构的透视图,但添加了金属盖300。图6h是图6g的结构的俯视图。图6i是图6g的结构的俯视横截面图。
36.整个说明书中使用了术语“耦合”。该术语可涵盖实现与本说明书一致的功能关系的连接、通信或信号路径。例如,如果器件a生成信号以控制器件b执行动作,则在第一示例中,器件a耦合到器件b,或者,在第二示例中,如果中间部件c没有实质性地改变器件a和器件b之间的功能关系,使得器件b经由器件a生成的控制信号而被器件a控制,则器件a通过中间部件c耦合到器件b。
37.制造商可在制造时对“配置为”执行任务或功能的器件进行配置(例如,编程和/或硬接线),以执行该功能,和/或可在制造后由用户配置(或重新配置)以执行该功能和/或其他附加或替代功能。配置可以通过器件的固件和/或软件编程、通过器件的硬件部件和互连的构造和/或布局,或其组合来实现。
38.除非另有说明,否则在某个值之前的“约”、“大约”或“基本上”是指所述值的+/-10%。在权利要求的范围内,有可能在所描述的实施例中进行修改且其他实施例是可能的。

技术特征:


1.一种半导体封装件,其包括:陶瓷衬底;由所述陶瓷衬底覆盖的第一金属层和第二金属层,所述第一金属层被配置为承载至少在20ghz至28ghz频率范围内的信号;半导体管芯,其位于所述第一金属层和所述第二金属层上方并耦合到所述第一金属层;接地屏蔽件,其位于所述半导体管芯和所述第一金属层之间的水平面中,所述接地屏蔽件包括在所述第一金属层的一部分上方的孔口;金属密封环,其耦合到所述陶瓷衬底的顶表面,所述金属密封环具有与所述接地屏蔽件的区段竖直对齐的区段,其中所述接地屏蔽件的所述区段在所述接地屏蔽件的所述孔口和所述接地屏蔽件的水平中心之间;以及金属盖,其耦合到所述金属密封环的顶表面。2.根据权利要求1所述的半导体封装件,其进一步包括水平地环绕所述半导体管芯的在1毫米至3毫米之间的间隙。3.根据权利要求1所述的半导体封装件,其中所述金属密封环被定位成水平远离所述孔口至少0.25毫米。4.根据权利要求1所述的半导体封装件,其中所述金属密封环具有沙漏形状。5.根据权利要求1所述的半导体封装件,其中所述金属密封环具有矩形形状。6.根据权利要求1所述的半导体封装件,其中所述陶瓷衬底包括腔体,所述半导体管芯被定位在所述腔体中,并且其中所述腔体具有沙漏形状。7.根据权利要求1所述的半导体封装件,其中所述金属密封环和所述第一金属层竖直分开至少0.75毫米。8.一种半导体封装件,其包括:衬底;由所述衬底覆盖的金属层,所述金属层被配置为承载在2ghz至38ghz的频率范围内的信号;半导体管芯,其耦合到所述金属层;在所述金属层和所述半导体管芯之间的接地屏蔽件,所述接地屏蔽件具有凹陷区域,所述凹陷区域沿着所述接地屏蔽件的周界并且邻接与所述接地屏蔽件相同的水平面中的空白空间,所述空白空间与所述金属层的第一区段竖直对齐,所述接地屏蔽件与所述金属层的第二区段对齐,所述第二区段比所述第一区段更接近所述半导体封装件的中心;金属密封环,其与所述接地屏蔽件竖直对齐,而不与所述空白空间竖直对齐;以及金属盖,其耦合到所述金属密封环的顶表面。9.根据权利要求8所述的半导体封装件,其进一步包括水平地环绕所述半导体管芯的在1毫米至3毫米之间的间隙。10.根据权利要求8所述的半导体封装件,其中所述金属密封环和所述空白空间水平分开至少0.45毫米。11.根据权利要求8所述的半导体封装件,其中所述金属密封环具有沙漏形状。12.根据权利要求8所述的半导体封装件,其中所述衬底包括腔体,所述半导体管芯被
定位在所述腔体中,并且其中所述腔体具有沙漏形状。13.根据权利要求8所述的半导体封装件,其中所述金属密封环和所述金属层竖直分开至少0.75毫米。14.根据权利要求8所述的半导体封装件,其中所述金属密封环与所述接地屏蔽件的区段竖直对齐,所述接地屏蔽件的所述区段水平定位在所述空白空间与所述接地屏蔽件的水平中心之间。15.一种方法,其包括:形成陶瓷衬底,其包括:腔体;第一金属层,其位于所述腔体的底板下方,所述第一金属层被配置为传导频率范围为2ghz至38ghz的信号;以及接地屏蔽件,其位于所述第一金属层和所述腔体的所述底板之间,所述接地屏蔽件具有邻接空白空间的凹陷区域,所述空白空间与所述接地屏蔽件处于相同的水平面内;将半导体管芯的器件侧面耦合到延伸穿过所述腔体的底板的导电端子,在环绕所述半导体管芯的水平面内存在1毫米至3毫米之间的间隙;在所述陶瓷衬底的顶表面上镀覆金属层;以及在所述金属层上形成金属密封环,所述密封环与所述接地屏蔽件竖直对齐,而不与所述空白空间竖直对齐。16.根据权利要求15所述的方法,其还包括将金属盖耦合到所述金属密封环的顶表面。17.根据权利要求15所述的方法,其还包括镀覆所述金属密封环。18.根据权利要求15所述的方法,其中所述金属密封环具有沙漏形状。19.根据权利要求15所述的方法,其中所述腔体具有沙漏形状。20.根据权利要求15所述的方法,其中所述金属密封环和所述空白空间水平分开至少0.45毫米。21.根据权利要求15所述的方法,其中所述密封环与所述接地屏蔽件的区段竖直对齐,所述接地屏蔽件的所述区段水平定位在所述空白空间与所述接地屏蔽件的水平中心之间。22.根据权利要求15所述的方法,其还包括使用1毫米至3毫米的间隙以在所述半导体管芯和所述腔体的所述底板之间分配底部填料。

技术总结


本申请题为“陶瓷半导体封装密封环”。在一些示例中,半导体封装件(100)包括陶瓷衬底(102)以及由陶瓷衬底覆盖的第一金属层(108)和第二金属层(110)。第一金属层被配置为承载至少在20GHz至28GHz频率范围内的信号。该封装件包括位于第一金属层和第二金属层上方并耦合到第一金属层的半导体管芯。该封装件包括位于半导体管芯和第一金属层之间的水平面中的接地屏蔽件(106),该接地屏蔽件包括在第一金属层的一部分上方的孔口。该封装件包括耦合到陶瓷衬底的顶表面的金属密封环(126),该金属密封环具有与接地屏蔽件的区段竖直对齐的区段。接地屏蔽件的该区段位于接地屏蔽件的孔口和接地屏蔽件的水平中心之间。该封装件包括耦合到金属密封环的顶表面的金属盖。合到金属密封环的顶表面的金属盖。合到金属密封环的顶表面的金属盖。


技术研发人员:

唐逸麒 L

受保护的技术使用者:

德克萨斯仪器股份有限公司

技术研发日:

2022.05.30

技术公布日:

2022/12/15

本文发布于:2024-09-22 20:32:40,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/4/40785.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:金属   所述   半导体   示例
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议